Proof of Theorem cdleme19e
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11l 1284 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝐾 ∈ HL) | 
| 2 | 1 | hllatd 39366 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝐾 ∈ Lat) | 
| 3 |  | simp11r 1285 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑊 ∈ 𝐻) | 
| 4 |  | simp12l 1286 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑃 ∈ 𝐴) | 
| 5 |  | simp13l 1288 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑄 ∈ 𝐴) | 
| 6 |  | simp21l 1290 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑆 ∈ 𝐴) | 
| 7 |  | cdleme19.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 8 |  | cdleme19.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 9 |  | cdleme19.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 10 |  | cdleme19.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 11 |  | cdleme19.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 12 |  | cdleme19.u | . . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 13 |  | cdleme19.f | . . . . 5
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | 
| 14 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 15 | 7, 8, 9, 10, 11, 12, 13, 14 | cdleme1b 40229 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) | 
| 16 | 1, 3, 4, 5, 6, 15 | syl23anc 1378 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝐹 ∈ (Base‘𝐾)) | 
| 17 |  | simp22l 1292 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑇 ∈ 𝐴) | 
| 18 |  | cdleme19.g | . . . . 5
⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | 
| 19 | 7, 8, 9, 10, 11, 12, 18, 14 | cdleme1b 40229 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐺 ∈ (Base‘𝐾)) | 
| 20 | 1, 3, 4, 5, 17, 19 | syl23anc 1378 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝐺 ∈ (Base‘𝐾)) | 
| 21 | 14, 8 | latjcom 18493 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾)) → (𝐹 ∨ 𝐺) = (𝐺 ∨ 𝐹)) | 
| 22 | 2, 16, 20, 21 | syl3anc 1372 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝐹 ∨ 𝐺) = (𝐺 ∨ 𝐹)) | 
| 23 |  | cdleme19.d | . . 3
⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | 
| 24 |  | cdleme19.y | . . 3
⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) | 
| 25 | 7, 8, 9, 10, 11, 12, 13, 18, 23, 24 | cdleme19d 40309 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝐹 ∨ 𝐷) = (𝐹 ∨ 𝐺)) | 
| 26 |  | simp11 1203 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 27 |  | simp12 1204 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 28 |  | simp13 1205 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 29 |  | simp22 1207 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) | 
| 30 |  | simp21 1206 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) | 
| 31 |  | simp23 1208 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑅 ∈ 𝐴) | 
| 32 |  | simp31l 1296 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑃 ≠ 𝑄) | 
| 33 |  | simp31r 1297 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑆 ≠ 𝑇) | 
| 34 | 33 | necomd 2995 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑇 ≠ 𝑆) | 
| 35 | 32, 34 | jca 511 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑃 ≠ 𝑄 ∧ 𝑇 ≠ 𝑆)) | 
| 36 |  | simp32r 1299 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) | 
| 37 |  | simp32l 1298 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) | 
| 38 | 36, 37 | jca 511 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) | 
| 39 |  | simp33l 1300 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) | 
| 40 |  | simp33r 1301 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑅 ≤ (𝑆 ∨ 𝑇)) | 
| 41 | 8, 10 | hlatjcom 39370 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑆)) | 
| 42 | 1, 6, 17, 41 | syl3anc 1372 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑆)) | 
| 43 | 40, 42 | breqtrd 5168 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → 𝑅 ≤ (𝑇 ∨ 𝑆)) | 
| 44 | 39, 43 | jca 511 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑇 ∨ 𝑆))) | 
| 45 | 7, 8, 9, 10, 11, 12, 18, 13, 24, 23 | cdleme19d 40309 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑇 ≠ 𝑆) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑇 ∨ 𝑆)))) → (𝐺 ∨ 𝑌) = (𝐺 ∨ 𝐹)) | 
| 46 | 26, 27, 28, 29, 30, 31, 35, 38, 44, 45 | syl333anc 1403 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝐺 ∨ 𝑌) = (𝐺 ∨ 𝐹)) | 
| 47 | 22, 25, 46 | 3eqtr4d 2786 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇)))) → (𝐹 ∨ 𝐷) = (𝐺 ∨ 𝑌)) |