| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1204 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp12 1205 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 3 |  | simp13 1206 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 4 |  | simp2l 1200 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) | 
| 5 |  | cdlemef46g.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | cdlemef46g.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 7 |  | cdlemef46g.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 8 |  | cdlemef46g.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 9 | 5, 6, 7, 8 | cdlemb2 40043 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) | 
| 10 | 1, 2, 3, 4, 9 | syl121anc 1377 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) | 
| 11 |  | simp1 1137 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | 
| 12 |  | simp2l 1200 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑄) | 
| 13 |  | simp2r 1201 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | 
| 14 |  | simp32 1211 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑒 ∈ 𝐴) | 
| 15 |  | simp33l 1301 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ 𝑊) | 
| 16 | 14, 15 | jca 511 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) | 
| 17 |  | simp31 1210 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) | 
| 18 |  | simp33r 1302 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) | 
| 19 |  | cdlemef46g.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) | 
| 20 |  | cdlemef46g.m | . . . . . . . 8
⊢  ∧ =
(meet‘𝐾) | 
| 21 |  | cdlemef46g.u | . . . . . . . 8
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 22 |  | cdlemef46g.d | . . . . . . . 8
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | 
| 23 |  | cdlemefs46g.e | . . . . . . . 8
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | 
| 24 |  | cdlemef46g.f | . . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | 
| 25 |  | cdlemef46.v | . . . . . . . 8
⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) | 
| 26 |  | cdlemef46.n | . . . . . . . 8
⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | 
| 27 |  | cdlemefs46.o | . . . . . . . 8
⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) | 
| 28 |  | cdlemef46.g | . . . . . . . 8
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) | 
| 29 | 19, 5, 6, 20, 7, 8,
21, 22, 23, 24, 25, 26, 27, 28 | cdlemeg46gfr 40533 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘(𝐹‘𝑅)) = 𝑅) | 
| 30 | 11, 12, 13, 16, 17, 18, 29 | syl132anc 1390 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝐺‘(𝐹‘𝑅)) = 𝑅) | 
| 31 | 30 | 3expia 1122 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘(𝐹‘𝑅)) = 𝑅)) | 
| 32 | 31 | 3expd 1354 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ≤ (𝑃 ∨ 𝑄) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅)))) | 
| 33 | 32 | 3impia 1118 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅))) | 
| 34 | 33 | rexlimdv 3153 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅)) | 
| 35 | 10, 34 | mpd 15 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅) |