Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp12 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simp13 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
4 | | simp2l 1197 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
5 | | cdlemef46g.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | cdlemef46g.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
7 | | cdlemef46g.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | cdlemef46g.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
9 | 5, 6, 7, 8 | cdlemb2 37982 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
10 | 1, 2, 3, 4, 9 | syl121anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
11 | | simp1 1134 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
12 | | simp2l 1197 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑄) |
13 | | simp2r 1198 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
14 | | simp32 1208 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑒 ∈ 𝐴) |
15 | | simp33l 1298 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ 𝑊) |
16 | 14, 15 | jca 511 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) |
17 | | simp31 1207 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
18 | | simp33r 1299 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) |
19 | | cdlemef46g.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
20 | | cdlemef46g.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
21 | | cdlemef46g.u |
. . . . . . . 8
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
22 | | cdlemef46g.d |
. . . . . . . 8
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
23 | | cdlemefs46g.e |
. . . . . . . 8
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
24 | | cdlemef46g.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
25 | | cdlemef46.v |
. . . . . . . 8
⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
26 | | cdlemef46.n |
. . . . . . . 8
⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
27 | | cdlemefs46.o |
. . . . . . . 8
⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) |
28 | | cdlemef46.g |
. . . . . . . 8
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) |
29 | 19, 5, 6, 20, 7, 8,
21, 22, 23, 24, 25, 26, 27, 28 | cdlemeg46gfr 38472 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘(𝐹‘𝑅)) = 𝑅) |
30 | 11, 12, 13, 16, 17, 18, 29 | syl132anc 1386 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝐺‘(𝐹‘𝑅)) = 𝑅) |
31 | 30 | 3expia 1119 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘(𝐹‘𝑅)) = 𝑅)) |
32 | 31 | 3expd 1351 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ≤ (𝑃 ∨ 𝑄) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅)))) |
33 | 32 | 3impia 1115 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅))) |
34 | 33 | rexlimdv 3211 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅)) |
35 | 10, 34 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅) |