Step | Hyp | Ref
| Expression |
1 | | simp11l 1285 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β πΎ β HL) |
2 | | simp21l 1291 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π
β π΄) |
3 | | simp22l 1293 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
4 | | simp23l 1295 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
5 | | simp31r 1298 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π) |
6 | | simp33l 1301 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π
β€ (π β¨ π)) |
7 | | cdleme19.l |
. . . 4
β’ β€ =
(leβπΎ) |
8 | | cdleme19.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
9 | | cdleme19.m |
. . . 4
β’ β§ =
(meetβπΎ) |
10 | | cdleme19.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
11 | 7, 8, 9, 10 | cdleme20y 38811 |
. . 3
β’ ((πΎ β HL β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π
β€ (π β¨ π))) β ((π β¨ π
) β§ (π β¨ π
)) = π
) |
12 | 1, 2, 3, 4, 5, 6, 11 | syl132anc 1389 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((π β¨ π
) β§ (π β¨ π
)) = π
) |
13 | | simp11r 1286 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π») |
14 | | simp12l 1287 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
15 | | simp12r 1288 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ π) |
16 | | simp13l 1289 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
17 | | simp31l 1297 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π) |
18 | | cdleme19.h |
. . . . 5
β’ π» = (LHypβπΎ) |
19 | | cdleme19.u |
. . . . 5
β’ π = ((π β¨ π) β§ π) |
20 | 7, 8, 9, 10, 18, 19 | lhpat2 38554 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
21 | 1, 13, 14, 15, 16, 17, 20 | syl222anc 1387 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β π β π΄) |
22 | | simp33r 1302 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β Β¬ π β€ (π β¨ π)) |
23 | 7, 8, 9, 10 | cdleme20y 38811 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ (π β¨ π)) = π) |
24 | 1, 21, 3, 4, 5, 22,
23 | syl132anc 1389 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β ((π β¨ π) β§ (π β¨ π)) = π) |
25 | 12, 24 | oveq12d 7376 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π)) β§ (Β¬ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)))) β (((π β¨ π
) β§ (π β¨ π
)) β¨ ((π β¨ π) β§ (π β¨ π))) = (π
β¨ π)) |