Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22g Structured version   Visualization version   GIF version

Theorem cdleme22g 40342
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝐺 represent f(s), f(t) respectively. If s t v and ¬ s p q, then f(s) f(t) v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22g.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22g.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme22g.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme22g ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))

Proof of Theorem cdleme22g
StepHypRef Expression
1 simp11l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
21hllatd 39357 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ Lat)
3 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp31 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
7 simp133 1311 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝑄)
8 simp132 1310 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑆 (𝑃 𝑄))
9 cdleme22.l . . . . . . 7 = (le‘𝐾)
10 cdleme22.j . . . . . . 7 = (join‘𝐾)
11 cdleme22.m . . . . . . 7 = (meet‘𝐾)
12 cdleme22.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
13 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
14 cdleme22g.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
15 cdleme22g.f . . . . . . 7 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
169, 10, 11, 12, 13, 14, 15cdleme3fa 40230 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
173, 4, 5, 6, 7, 8, 16syl132anc 1390 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹𝐴)
18 simp12 1205 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
19 simp131 1309 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑇 (𝑃 𝑄))
20 cdleme22g.g . . . . . . 7 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
219, 10, 11, 12, 13, 14, 20cdleme3fa 40230 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄))) → 𝐺𝐴)
223, 4, 5, 18, 7, 19, 21syl132anc 1390 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐺𝐴)
23 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2423, 10, 12hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴) → (𝐹 𝐺) ∈ (Base‘𝐾))
251, 17, 22, 24syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐹 𝐺) ∈ (Base‘𝐾))
26 simp11r 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑊𝐻)
2723, 13lhpbase 39992 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2826, 27syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑊 ∈ (Base‘𝐾))
2923, 9, 11latmle1 18423 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝐹 𝐺) 𝑊) (𝐹 𝐺))
302, 25, 28, 29syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝐹 𝐺) 𝑊) (𝐹 𝐺))
31 simp33 1212 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉𝐴𝑉 𝑊))
32 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝑇𝑆 (𝑇 𝑉)))
339, 10, 11, 12, 13cdleme22d 40337 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 = ((𝑆 𝑇) 𝑊))
343, 6, 18, 31, 32, 33syl131anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 = ((𝑆 𝑇) 𝑊))
35 simp32l 1299 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆𝑇)
367, 35jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝑄𝑆𝑇))
379, 10, 11, 12, 13, 14, 15, 20cdleme16 40279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))
383, 4, 5, 6, 18, 36, 8, 19, 37syl332anc 1403 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))
3934, 38eqtr2d 2765 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝐹 𝐺) 𝑊) = 𝑉)
4010, 12hlatjcom 39361 . . . 4 ((𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴) → (𝐹 𝐺) = (𝐺 𝐹))
411, 17, 22, 40syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐹 𝐺) = (𝐺 𝐹))
4230, 39, 413brtr3d 5138 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 (𝐺 𝐹))
43 hlcvl 39352 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
441, 43syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ CvLat)
45 simp33l 1301 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
46 simp33r 1302 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 𝑊)
479, 10, 11, 12, 13, 14, 20cdleme3 40231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄))) → ¬ 𝐺 𝑊)
483, 4, 5, 18, 7, 19, 47syl132anc 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝐺 𝑊)
49 nbrne2 5127 . . . 4 ((𝑉 𝑊 ∧ ¬ 𝐺 𝑊) → 𝑉𝐺)
5046, 48, 49syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐺)
519, 10, 12cvlatexch1 39329 . . 3 ((𝐾 ∈ CvLat ∧ (𝑉𝐴𝐹𝐴𝐺𝐴) ∧ 𝑉𝐺) → (𝑉 (𝐺 𝐹) → 𝐹 (𝐺 𝑉)))
5244, 45, 17, 22, 50, 51syl131anc 1385 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉 (𝐺 𝐹) → 𝐹 (𝐺 𝑉)))
5342, 52mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  CvLatclc 39258  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982
This theorem is referenced by:  cdleme27a  40361
  Copyright terms: Public domain W3C validator