Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22g Structured version   Visualization version   GIF version

Theorem cdleme22g 39207
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝐺 represent f(s), f(t) respectively. If s ≀ t ∨ v and Β¬ s ≀ p ∨ q, then f(s) ≀ f(t) ∨ v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l ≀ = (leβ€˜πΎ)
cdleme22.j ∨ = (joinβ€˜πΎ)
cdleme22.m ∧ = (meetβ€˜πΎ)
cdleme22.a 𝐴 = (Atomsβ€˜πΎ)
cdleme22.h 𝐻 = (LHypβ€˜πΎ)
cdleme22g.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme22g.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme22g.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
Assertion
Ref Expression
cdleme22g ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐹 ≀ (𝐺 ∨ 𝑉))

Proof of Theorem cdleme22g
StepHypRef Expression
1 simp11l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
21hllatd 38222 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐾 ∈ Lat)
3 simp11 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simp2l 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
5 simp2r 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
6 simp31 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
7 simp133 1310 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑃 β‰  𝑄)
8 simp132 1309 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
9 cdleme22.l . . . . . . 7 ≀ = (leβ€˜πΎ)
10 cdleme22.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
11 cdleme22.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
12 cdleme22.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
13 cdleme22.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
14 cdleme22g.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
15 cdleme22g.f . . . . . . 7 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
169, 10, 11, 12, 13, 14, 15cdleme3fa 39095 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 ∈ 𝐴)
173, 4, 5, 6, 7, 8, 16syl132anc 1388 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐹 ∈ 𝐴)
18 simp12 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š))
19 simp131 1308 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))
20 cdleme22g.g . . . . . . 7 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
219, 10, 11, 12, 13, 14, 20cdleme3fa 39095 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐺 ∈ 𝐴)
223, 4, 5, 18, 7, 19, 21syl132anc 1388 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐺 ∈ 𝐴)
23 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2423, 10, 12hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) β†’ (𝐹 ∨ 𝐺) ∈ (Baseβ€˜πΎ))
251, 17, 22, 24syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝐹 ∨ 𝐺) ∈ (Baseβ€˜πΎ))
26 simp11r 1285 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ π‘Š ∈ 𝐻)
2723, 13lhpbase 38857 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2826, 27syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
2923, 9, 11latmle1 18413 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹 ∨ 𝐺) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝐹 ∨ 𝐺) ∧ π‘Š) ≀ (𝐹 ∨ 𝐺))
302, 25, 28, 29syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ ((𝐹 ∨ 𝐺) ∧ π‘Š) ≀ (𝐹 ∨ 𝐺))
31 simp33 1211 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))
32 simp32 1210 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)))
339, 10, 11, 12, 13cdleme22d 39202 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š))
343, 6, 18, 31, 32, 33syl131anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š))
35 simp32l 1298 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑆 β‰  𝑇)
367, 35jca 512 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇))
379, 10, 11, 12, 13, 14, 15, 20cdleme16 39144 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑇)) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
383, 4, 5, 6, 18, 36, 8, 19, 37syl332anc 1401 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = ((𝐹 ∨ 𝐺) ∧ π‘Š))
3934, 38eqtr2d 2773 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ ((𝐹 ∨ 𝐺) ∧ π‘Š) = 𝑉)
4010, 12hlatjcom 38226 . . . 4 ((𝐾 ∈ HL ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) β†’ (𝐹 ∨ 𝐺) = (𝐺 ∨ 𝐹))
411, 17, 22, 40syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝐹 ∨ 𝐺) = (𝐺 ∨ 𝐹))
4230, 39, 413brtr3d 5178 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑉 ≀ (𝐺 ∨ 𝐹))
43 hlcvl 38217 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ CvLat)
441, 43syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐾 ∈ CvLat)
45 simp33l 1300 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑉 ∈ 𝐴)
46 simp33r 1301 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑉 ≀ π‘Š)
479, 10, 11, 12, 13, 14, 20cdleme3 39096 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝐺 ≀ π‘Š)
483, 4, 5, 18, 7, 19, 47syl132anc 1388 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ Β¬ 𝐺 ≀ π‘Š)
49 nbrne2 5167 . . . 4 ((𝑉 ≀ π‘Š ∧ Β¬ 𝐺 ≀ π‘Š) β†’ 𝑉 β‰  𝐺)
5046, 48, 49syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝑉 β‰  𝐺)
519, 10, 12cvlatexch1 38194 . . 3 ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑉 β‰  𝐺) β†’ (𝑉 ≀ (𝐺 ∨ 𝐹) β†’ 𝐹 ≀ (𝐺 ∨ 𝑉)))
5244, 45, 17, 22, 50, 51syl131anc 1383 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ (𝑉 ≀ (𝐺 ∨ 𝐹) β†’ 𝐹 ≀ (𝐺 ∨ 𝑉)))
5342, 52mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))) β†’ 𝐹 ≀ (𝐺 ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  CvLatclc 38123  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847
This theorem is referenced by:  cdleme27a  39226
  Copyright terms: Public domain W3C validator