Proof of Theorem cdleme22g
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11l 1285 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐾 ∈ HL) | 
| 2 | 1 | hllatd 39365 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐾 ∈ Lat) | 
| 3 |  | simp11 1204 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 4 |  | simp2l 1200 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 5 |  | simp2r 1201 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 6 |  | simp31 1210 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) | 
| 7 |  | simp133 1311 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑃 ≠ 𝑄) | 
| 8 |  | simp132 1310 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) | 
| 9 |  | cdleme22.l | . . . . . . 7
⊢  ≤ =
(le‘𝐾) | 
| 10 |  | cdleme22.j | . . . . . . 7
⊢  ∨ =
(join‘𝐾) | 
| 11 |  | cdleme22.m | . . . . . . 7
⊢  ∧ =
(meet‘𝐾) | 
| 12 |  | cdleme22.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 13 |  | cdleme22.h | . . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) | 
| 14 |  | cdleme22g.u | . . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 15 |  | cdleme22g.f | . . . . . . 7
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | 
| 16 | 9, 10, 11, 12, 13, 14, 15 | cdleme3fa 40238 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) | 
| 17 | 3, 4, 5, 6, 7, 8, 16 | syl132anc 1390 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐹 ∈ 𝐴) | 
| 18 |  | simp12 1205 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) | 
| 19 |  | simp131 1309 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) | 
| 20 |  | cdleme22g.g | . . . . . . 7
⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | 
| 21 | 9, 10, 11, 12, 13, 14, 20 | cdleme3fa 40238 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) → 𝐺 ∈ 𝐴) | 
| 22 | 3, 4, 5, 18, 7, 19, 21 | syl132anc 1390 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐺 ∈ 𝐴) | 
| 23 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 24 | 23, 10, 12 | hlatjcl 39368 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝐹 ∨ 𝐺) ∈ (Base‘𝐾)) | 
| 25 | 1, 17, 22, 24 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝐹 ∨ 𝐺) ∈ (Base‘𝐾)) | 
| 26 |  | simp11r 1286 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑊 ∈ 𝐻) | 
| 27 | 23, 13 | lhpbase 40000 | . . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 28 | 26, 27 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) | 
| 29 | 23, 9, 11 | latmle1 18509 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝐹 ∨ 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝐹 ∨ 𝐺) ∧ 𝑊) ≤ (𝐹 ∨ 𝐺)) | 
| 30 | 2, 25, 28, 29 | syl3anc 1373 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ((𝐹 ∨ 𝐺) ∧ 𝑊) ≤ (𝐹 ∨ 𝐺)) | 
| 31 |  | simp33 1212 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) | 
| 32 |  | simp32 1211 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) | 
| 33 | 9, 10, 11, 12, 13 | cdleme22d 40345 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑉 = ((𝑆 ∨ 𝑇) ∧ 𝑊)) | 
| 34 | 3, 6, 18, 31, 32, 33 | syl131anc 1385 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 = ((𝑆 ∨ 𝑇) ∧ 𝑊)) | 
| 35 |  | simp32l 1299 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑆 ≠ 𝑇) | 
| 36 | 7, 35 | jca 511 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) | 
| 37 | 9, 10, 11, 12, 13, 14, 15, 20 | cdleme16 40287 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) | 
| 38 | 3, 4, 5, 6, 18, 36, 8, 19, 37 | syl332anc 1403 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) | 
| 39 | 34, 38 | eqtr2d 2778 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ((𝐹 ∨ 𝐺) ∧ 𝑊) = 𝑉) | 
| 40 | 10, 12 | hlatjcom 39369 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝐹 ∨ 𝐺) = (𝐺 ∨ 𝐹)) | 
| 41 | 1, 17, 22, 40 | syl3anc 1373 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝐹 ∨ 𝐺) = (𝐺 ∨ 𝐹)) | 
| 42 | 30, 39, 41 | 3brtr3d 5174 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ≤ (𝐺 ∨ 𝐹)) | 
| 43 |  | hlcvl 39360 | . . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | 
| 44 | 1, 43 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐾 ∈ CvLat) | 
| 45 |  | simp33l 1301 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ∈ 𝐴) | 
| 46 |  | simp33r 1302 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ≤ 𝑊) | 
| 47 | 9, 10, 11, 12, 13, 14, 20 | cdleme3 40239 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐺 ≤ 𝑊) | 
| 48 | 3, 4, 5, 18, 7, 19, 47 | syl132anc 1390 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ¬ 𝐺 ≤ 𝑊) | 
| 49 |  | nbrne2 5163 | . . . 4
⊢ ((𝑉 ≤ 𝑊 ∧ ¬ 𝐺 ≤ 𝑊) → 𝑉 ≠ 𝐺) | 
| 50 | 46, 48, 49 | syl2anc 584 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ≠ 𝐺) | 
| 51 | 9, 10, 12 | cvlatexch1 39337 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑉 ∈ 𝐴 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑉 ≠ 𝐺) → (𝑉 ≤ (𝐺 ∨ 𝐹) → 𝐹 ≤ (𝐺 ∨ 𝑉))) | 
| 52 | 44, 45, 17, 22, 50, 51 | syl131anc 1385 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑉 ≤ (𝐺 ∨ 𝐹) → 𝐹 ≤ (𝐺 ∨ 𝑉))) | 
| 53 | 42, 52 | mpd 15 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐹 ≤ (𝐺 ∨ 𝑉)) |