Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22g Structured version   Visualization version   GIF version

Theorem cdleme22g 36369
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝐺 represent f(s), f(t) respectively. If s t v and ¬ s p q, then f(s) f(t) v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22g.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22g.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme22g.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme22g ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))

Proof of Theorem cdleme22g
StepHypRef Expression
1 simp11l 1384 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
21hllatd 35385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ Lat)
3 simp11 1261 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp2l 1257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp2r 1258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp31 1267 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
7 simp133 1410 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝑄)
8 simp132 1409 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑆 (𝑃 𝑄))
9 cdleme22.l . . . . . . 7 = (le‘𝐾)
10 cdleme22.j . . . . . . 7 = (join‘𝐾)
11 cdleme22.m . . . . . . 7 = (meet‘𝐾)
12 cdleme22.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
13 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
14 cdleme22g.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
15 cdleme22g.f . . . . . . 7 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
169, 10, 11, 12, 13, 14, 15cdleme3fa 36257 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
173, 4, 5, 6, 7, 8, 16syl132anc 1508 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹𝐴)
18 simp12 1262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
19 simp131 1408 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑇 (𝑃 𝑄))
20 cdleme22g.g . . . . . . 7 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
219, 10, 11, 12, 13, 14, 20cdleme3fa 36257 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄))) → 𝐺𝐴)
223, 4, 5, 18, 7, 19, 21syl132anc 1508 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐺𝐴)
23 eqid 2799 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2423, 10, 12hlatjcl 35388 . . . . 5 ((𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴) → (𝐹 𝐺) ∈ (Base‘𝐾))
251, 17, 22, 24syl3anc 1491 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐹 𝐺) ∈ (Base‘𝐾))
26 simp11r 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑊𝐻)
2723, 13lhpbase 36019 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2826, 27syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑊 ∈ (Base‘𝐾))
2923, 9, 11latmle1 17391 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝐹 𝐺) 𝑊) (𝐹 𝐺))
302, 25, 28, 29syl3anc 1491 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝐹 𝐺) 𝑊) (𝐹 𝐺))
31 simp33 1269 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉𝐴𝑉 𝑊))
32 simp32 1268 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝑇𝑆 (𝑇 𝑉)))
339, 10, 11, 12, 13cdleme22d 36364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 = ((𝑆 𝑇) 𝑊))
343, 6, 18, 31, 32, 33syl131anc 1503 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 = ((𝑆 𝑇) 𝑊))
35 simp32l 1398 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆𝑇)
367, 35jca 508 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝑄𝑆𝑇))
379, 10, 11, 12, 13, 14, 15, 20cdleme16 36306 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))
383, 4, 5, 6, 18, 36, 8, 19, 37syl332anc 1521 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))
3934, 38eqtr2d 2834 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝐹 𝐺) 𝑊) = 𝑉)
4010, 12hlatjcom 35389 . . . 4 ((𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴) → (𝐹 𝐺) = (𝐺 𝐹))
411, 17, 22, 40syl3anc 1491 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐹 𝐺) = (𝐺 𝐹))
4230, 39, 413brtr3d 4874 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 (𝐺 𝐹))
43 hlcvl 35380 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
441, 43syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ CvLat)
45 simp33l 1400 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
46 simp33r 1401 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 𝑊)
479, 10, 11, 12, 13, 14, 20cdleme3 36258 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄))) → ¬ 𝐺 𝑊)
483, 4, 5, 18, 7, 19, 47syl132anc 1508 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝐺 𝑊)
49 nbrne2 4863 . . . 4 ((𝑉 𝑊 ∧ ¬ 𝐺 𝑊) → 𝑉𝐺)
5046, 48, 49syl2anc 580 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐺)
519, 10, 12cvlatexch1 35357 . . 3 ((𝐾 ∈ CvLat ∧ (𝑉𝐴𝐹𝐴𝐺𝐴) ∧ 𝑉𝐺) → (𝑉 (𝐺 𝐹) → 𝐹 (𝐺 𝑉)))
5244, 45, 17, 22, 50, 51syl131anc 1503 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉 (𝐺 𝐹) → 𝐹 (𝐺 𝑉)))
5342, 52mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971   class class class wbr 4843  cfv 6101  (class class class)co 6878  Basecbs 16184  lecple 16274  joincjn 17259  meetcmee 17260  Latclat 17360  Atomscatm 35284  CvLatclc 35286  HLchlt 35371  LHypclh 36005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009
This theorem is referenced by:  cdleme27a  36388
  Copyright terms: Public domain W3C validator