Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21d Structured version   Visualization version   GIF version

Theorem cdleme21d 39201
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 115, 3rd line. 𝐷, 𝐹, 𝑁, 𝐸, 𝐡, 𝑍 represent s2, f(s), fs(r), z2, f(z), fz(r) respectively. We prove fs(r) = fz(r). (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l ≀ = (leβ€˜πΎ)
cdleme21.j ∨ = (joinβ€˜πΎ)
cdleme21.m ∧ = (meetβ€˜πΎ)
cdleme21.a 𝐴 = (Atomsβ€˜πΎ)
cdleme21.h 𝐻 = (LHypβ€˜πΎ)
cdleme21.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme21.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme21.b 𝐡 = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
cdleme21.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdleme21.e 𝐸 = ((𝑅 ∨ 𝑧) ∧ π‘Š)
cdleme21d.n 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))
cdleme21d.z 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝐡 ∨ 𝐸))
Assertion
Ref Expression
cdleme21d ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑍)

Proof of Theorem cdleme21d
StepHypRef Expression
1 simp11 1204 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp12 1205 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simp13 1206 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
4 simp2l 1200 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
5 simp2r 1201 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
6 simp33l 1301 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))
7 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑃 β‰  𝑄)
8 simp11l 1285 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝐾 ∈ HL)
9 simp12l 1287 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑃 ∈ 𝐴)
10 simp13l 1289 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑄 ∈ 𝐴)
11 simp2rl 1243 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑆 ∈ 𝐴)
12 simp32l 1299 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
136simpld 496 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑧 ∈ 𝐴)
14 simp33r 1302 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))
15 cdleme21.l . . . . 5 ≀ = (leβ€˜πΎ)
16 cdleme21.j . . . . 5 ∨ = (joinβ€˜πΎ)
17 cdleme21.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
1815, 16, 17cdleme21a 39196 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑆 β‰  𝑧)
198, 9, 10, 11, 12, 13, 14, 18syl322anc 1399 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑆 β‰  𝑧)
207, 19jca 513 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑧))
2115, 16, 17cdleme21b 39197 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄))
228, 9, 10, 11, 7, 12, 13, 14, 21syl332anc 1402 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄))
23 simp32r 1300 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
2412, 22, 233jca 1129 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))
25 cdleme21.m . . . 4 ∧ = (meetβ€˜πΎ)
26 cdleme21.h . . . 4 𝐻 = (LHypβ€˜πΎ)
27 cdleme21.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
2815, 16, 25, 17, 26, 27cdleme21c 39198 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑧))
291, 2, 10, 11, 7, 12, 13, 14, 28syl332anc 1402 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑧))
30 cdleme21.f . . 3 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
31 cdleme21.b . . 3 𝐡 = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
32 cdleme21.d . . 3 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
33 cdleme21.e . . 3 𝐸 = ((𝑅 ∨ 𝑧) ∧ π‘Š)
34 eqid 2733 . . 3 ((𝑆 ∨ 𝑧) ∧ π‘Š) = ((𝑆 ∨ 𝑧) ∧ π‘Š)
35 cdleme21d.n . . 3 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))
36 cdleme21d.z . . 3 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝐡 ∨ 𝐸))
3715, 16, 25, 17, 26, 27, 30, 31, 32, 33, 34, 35, 36cdleme20 39195 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š)) ∧ ((𝑃 β‰  𝑄 ∧ 𝑆 β‰  𝑧) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑧))) β†’ 𝑁 = 𝑍)
381, 2, 3, 4, 5, 6, 20, 24, 29, 37syl333anc 1403 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  lecple 17204  joincjn 18264  meetcmee 18265  Atomscatm 38133  HLchlt 38220  LHypclh 38855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859
This theorem is referenced by:  cdleme21f  39203
  Copyright terms: Public domain W3C validator