Proof of Theorem cdleme37m
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 2 | | simp23 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
| 3 | | simp32l 1299 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
| 4 | | simp33l 1301 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊)) |
| 5 | | simp21 1207 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑄) |
| 6 | | simp32r 1300 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) |
| 7 | | simp33r 1302 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)) |
| 8 | | simp31r 1298 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 9 | 6, 7, 8 | 3jca 1129 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (¬ 𝑡 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) |
| 10 | | cdleme37.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 11 | | cdleme37.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 12 | | cdleme37.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 13 | | cdleme37.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 14 | | cdleme37.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 15 | | cdleme37.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 16 | | cdleme37.e |
. . . 4
⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 17 | | cdleme37.d |
. . . 4
⊢ 𝐷 = ((𝑢 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑢) ∧ 𝑊))) |
| 18 | | eqid 2737 |
. . . 4
⊢ ((𝑆 ∨ 𝑡) ∧ 𝑊) = ((𝑆 ∨ 𝑡) ∧ 𝑊) |
| 19 | | eqid 2737 |
. . . 4
⊢ ((𝑆 ∨ 𝑢) ∧ 𝑊) = ((𝑆 ∨ 𝑢) ∧ 𝑊) |
| 20 | | eqid 2737 |
. . . 4
⊢ ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊))) |
| 21 | | eqid 2737 |
. . . 4
⊢ ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊))) |
| 22 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | cdleme21k 40340 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (¬ 𝑡 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊)))) |
| 23 | 1, 2, 3, 4, 5, 9, 22 | syl132anc 1390 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊)))) |
| 24 | | cdleme37.c |
. . 3
⊢ 𝐶 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))) |
| 25 | | simp11 1204 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 26 | | simp12l 1287 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ 𝐴) |
| 27 | | simp13l 1289 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ 𝐴) |
| 28 | 10, 11, 12, 13, 14, 15 | cdleme4 40240 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑈)) |
| 29 | 25, 26, 27, 2, 8, 28 | syl131anc 1385 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑈)) |
| 30 | | cdleme37.v |
. . . . . . 7
⊢ 𝑉 = ((𝑡 ∨ 𝐸) ∧ 𝑊) |
| 31 | 10, 11, 12, 13, 14, 15, 16 | cdleme2 40230 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → ((𝑡 ∨ 𝐸) ∧ 𝑊) = 𝑈) |
| 32 | 25, 26, 27, 3, 31 | syl13anc 1374 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑡 ∨ 𝐸) ∧ 𝑊) = 𝑈) |
| 33 | 30, 32 | eqtrid 2789 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑉 = 𝑈) |
| 34 | 33 | oveq2d 7447 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑉) = (𝑆 ∨ 𝑈)) |
| 35 | 29, 34 | eqtr4d 2780 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑉)) |
| 36 | | simp11l 1285 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ HL) |
| 37 | | simp23l 1295 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ∈ 𝐴) |
| 38 | 3 | simpld 494 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑡 ∈ 𝐴) |
| 39 | 11, 13 | hlatjcom 39369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → (𝑆 ∨ 𝑡) = (𝑡 ∨ 𝑆)) |
| 40 | 36, 37, 38, 39 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑡) = (𝑡 ∨ 𝑆)) |
| 41 | 40 | oveq1d 7446 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑡) ∧ 𝑊) = ((𝑡 ∨ 𝑆) ∧ 𝑊)) |
| 42 | 41 | oveq2d 7447 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊)) = (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))) |
| 43 | 35, 42 | oveq12d 7449 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊))) = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊)))) |
| 44 | 24, 43 | eqtr4id 2796 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝐶 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑆 ∨ 𝑡) ∧ 𝑊)))) |
| 45 | | cdleme37.g |
. . 3
⊢ 𝐺 = ((𝑆 ∨ 𝑋) ∧ (𝐷 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) |
| 46 | | cdleme37.x |
. . . . . . 7
⊢ 𝑋 = ((𝑢 ∨ 𝐷) ∧ 𝑊) |
| 47 | 10, 11, 12, 13, 14, 15, 17 | cdleme2 40230 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊))) → ((𝑢 ∨ 𝐷) ∧ 𝑊) = 𝑈) |
| 48 | 25, 26, 27, 4, 47 | syl13anc 1374 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑢 ∨ 𝐷) ∧ 𝑊) = 𝑈) |
| 49 | 46, 48 | eqtrid 2789 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑋 = 𝑈) |
| 50 | 49 | oveq2d 7447 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑋) = (𝑆 ∨ 𝑈)) |
| 51 | 29, 50 | eqtr4d 2780 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑋)) |
| 52 | 4 | simpld 494 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑢 ∈ 𝐴) |
| 53 | 11, 13 | hlatjcom 39369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝑆 ∨ 𝑢) = (𝑢 ∨ 𝑆)) |
| 54 | 36, 37, 52, 53 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑆 ∨ 𝑢) = (𝑢 ∨ 𝑆)) |
| 55 | 54 | oveq1d 7446 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑢) ∧ 𝑊) = ((𝑢 ∨ 𝑆) ∧ 𝑊)) |
| 56 | 55 | oveq2d 7447 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊)) = (𝐷 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) |
| 57 | 51, 56 | oveq12d 7449 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊))) = ((𝑆 ∨ 𝑋) ∧ (𝐷 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊)))) |
| 58 | 45, 57 | eqtr4id 2796 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑆 ∨ 𝑢) ∧ 𝑊)))) |
| 59 | 23, 44, 58 | 3eqtr4d 2787 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝐶 = 𝐺) |