Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme37m Structured version   Visualization version   GIF version

Theorem cdleme37m 38403
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. (Contributed by NM, 13-Mar-2013.)
Hypotheses
Ref Expression
cdleme37.l = (le‘𝐾)
cdleme37.j = (join‘𝐾)
cdleme37.m = (meet‘𝐾)
cdleme37.a 𝐴 = (Atoms‘𝐾)
cdleme37.h 𝐻 = (LHyp‘𝐾)
cdleme37.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme37.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme37.d 𝐷 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme37.v 𝑉 = ((𝑡 𝐸) 𝑊)
cdleme37.x 𝑋 = ((𝑢 𝐷) 𝑊)
cdleme37.c 𝐶 = ((𝑆 𝑉) (𝐸 ((𝑡 𝑆) 𝑊)))
cdleme37.g 𝐺 = ((𝑆 𝑋) (𝐷 ((𝑢 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme37m ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐶 = 𝐺)

Proof of Theorem cdleme37m
StepHypRef Expression
1 simp1 1134 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simp23 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
3 simp32l 1296 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
4 simp33l 1298 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑢𝐴 ∧ ¬ 𝑢 𝑊))
5 simp21 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑃𝑄)
6 simp32r 1297 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
7 simp33r 1299 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ¬ 𝑢 (𝑃 𝑄))
8 simp31r 1295 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
96, 7, 83jca 1126 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑢 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)))
10 cdleme37.l . . . 4 = (le‘𝐾)
11 cdleme37.j . . . 4 = (join‘𝐾)
12 cdleme37.m . . . 4 = (meet‘𝐾)
13 cdleme37.a . . . 4 𝐴 = (Atoms‘𝐾)
14 cdleme37.h . . . 4 𝐻 = (LHyp‘𝐾)
15 cdleme37.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
16 cdleme37.e . . . 4 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
17 cdleme37.d . . . 4 𝐷 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
18 eqid 2738 . . . 4 ((𝑆 𝑡) 𝑊) = ((𝑆 𝑡) 𝑊)
19 eqid 2738 . . . 4 ((𝑆 𝑢) 𝑊) = ((𝑆 𝑢) 𝑊)
20 eqid 2738 . . . 4 ((𝑃 𝑄) (𝐸 ((𝑆 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐸 ((𝑆 𝑡) 𝑊)))
21 eqid 2738 . . . 4 ((𝑃 𝑄) (𝐷 ((𝑆 𝑢) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑆 𝑢) 𝑊)))
2210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21cdleme21k 38279 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝑢𝐴 ∧ ¬ 𝑢 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑢 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)))) → ((𝑃 𝑄) (𝐸 ((𝑆 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑆 𝑢) 𝑊))))
231, 2, 3, 4, 5, 9, 22syl132anc 1386 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑃 𝑄) (𝐸 ((𝑆 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑆 𝑢) 𝑊))))
24 cdleme37.c . . 3 𝐶 = ((𝑆 𝑉) (𝐸 ((𝑡 𝑆) 𝑊)))
25 simp11 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simp12l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑃𝐴)
27 simp13l 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑄𝐴)
2810, 11, 12, 13, 14, 15cdleme4 38179 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑆 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑆 𝑈))
2925, 26, 27, 2, 8, 28syl131anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑃 𝑄) = (𝑆 𝑈))
30 cdleme37.v . . . . . . 7 𝑉 = ((𝑡 𝐸) 𝑊)
3110, 11, 12, 13, 14, 15, 16cdleme2 38169 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → ((𝑡 𝐸) 𝑊) = 𝑈)
3225, 26, 27, 3, 31syl13anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑡 𝐸) 𝑊) = 𝑈)
3330, 32syl5eq 2791 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑉 = 𝑈)
3433oveq2d 7271 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑆 𝑉) = (𝑆 𝑈))
3529, 34eqtr4d 2781 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑃 𝑄) = (𝑆 𝑉))
36 simp11l 1282 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐾 ∈ HL)
37 simp23l 1292 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑆𝐴)
383simpld 494 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑡𝐴)
3911, 13hlatjcom 37309 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑡𝐴) → (𝑆 𝑡) = (𝑡 𝑆))
4036, 37, 38, 39syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑆 𝑡) = (𝑡 𝑆))
4140oveq1d 7270 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑆 𝑡) 𝑊) = ((𝑡 𝑆) 𝑊))
4241oveq2d 7271 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝐸 ((𝑆 𝑡) 𝑊)) = (𝐸 ((𝑡 𝑆) 𝑊)))
4335, 42oveq12d 7273 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑃 𝑄) (𝐸 ((𝑆 𝑡) 𝑊))) = ((𝑆 𝑉) (𝐸 ((𝑡 𝑆) 𝑊))))
4424, 43eqtr4id 2798 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐶 = ((𝑃 𝑄) (𝐸 ((𝑆 𝑡) 𝑊))))
45 cdleme37.g . . 3 𝐺 = ((𝑆 𝑋) (𝐷 ((𝑢 𝑆) 𝑊)))
46 cdleme37.x . . . . . . 7 𝑋 = ((𝑢 𝐷) 𝑊)
4710, 11, 12, 13, 14, 15, 17cdleme2 38169 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑢𝐴 ∧ ¬ 𝑢 𝑊))) → ((𝑢 𝐷) 𝑊) = 𝑈)
4825, 26, 27, 4, 47syl13anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑢 𝐷) 𝑊) = 𝑈)
4946, 48syl5eq 2791 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑋 = 𝑈)
5049oveq2d 7271 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑆 𝑋) = (𝑆 𝑈))
5129, 50eqtr4d 2781 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑃 𝑄) = (𝑆 𝑋))
524simpld 494 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑢𝐴)
5311, 13hlatjcom 37309 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑢𝐴) → (𝑆 𝑢) = (𝑢 𝑆))
5436, 37, 52, 53syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑆 𝑢) = (𝑢 𝑆))
5554oveq1d 7270 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑆 𝑢) 𝑊) = ((𝑢 𝑆) 𝑊))
5655oveq2d 7271 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝐷 ((𝑆 𝑢) 𝑊)) = (𝐷 ((𝑢 𝑆) 𝑊)))
5751, 56oveq12d 7273 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑃 𝑄) (𝐷 ((𝑆 𝑢) 𝑊))) = ((𝑆 𝑋) (𝐷 ((𝑢 𝑆) 𝑊))))
5845, 57eqtr4id 2798 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐺 = ((𝑃 𝑄) (𝐷 ((𝑆 𝑢) 𝑊))))
5923, 44, 583eqtr4d 2788 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐶 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  HLchlt 37291  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929
This theorem is referenced by:  cdleme38m  38404
  Copyright terms: Public domain W3C validator