MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33l Structured version   Visualization version   GIF version

Theorem simp33l 1301
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33l ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simp33l
StepHypRef Expression
1 simp3l 1202 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜑)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34435  cdleme19b  40342  cdleme19d  40344  cdleme19e  40345  cdleme20h  40354  cdleme20l2  40359  cdleme20m  40361  cdleme21d  40368  cdleme21e  40369  cdleme22e  40382  cdleme22f2  40385  cdleme22g  40386  cdleme26e  40397  cdleme28a  40408  cdleme28b  40409  cdleme37m  40500  cdleme39n  40504  cdlemeg46gfre  40570  cdlemg28a  40731  cdlemg28b  40741  cdlemk3  40871  cdlemk5a  40873  cdlemk6  40875  cdlemkuat  40904  cdlemkid2  40962
  Copyright terms: Public domain W3C validator