| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp33l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp33l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l 1202 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: totprob 34435 cdleme19b 40342 cdleme19d 40344 cdleme19e 40345 cdleme20h 40354 cdleme20l2 40359 cdleme20m 40361 cdleme21d 40368 cdleme21e 40369 cdleme22e 40382 cdleme22f2 40385 cdleme22g 40386 cdleme26e 40397 cdleme28a 40408 cdleme28b 40409 cdleme37m 40500 cdleme39n 40504 cdlemeg46gfre 40570 cdlemg28a 40731 cdlemg28b 40741 cdlemk3 40871 cdlemk5a 40873 cdlemk6 40875 cdlemkuat 40904 cdlemkid2 40962 |
| Copyright terms: Public domain | W3C validator |