Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp33l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp33l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1199 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: totprob 32373 cdleme19b 38297 cdleme19d 38299 cdleme19e 38300 cdleme20h 38309 cdleme20l2 38314 cdleme20m 38316 cdleme21d 38323 cdleme21e 38324 cdleme22e 38337 cdleme22f2 38340 cdleme22g 38341 cdleme26e 38352 cdleme28a 38363 cdleme28b 38364 cdleme37m 38455 cdleme39n 38459 cdlemeg46gfre 38525 cdlemg28a 38686 cdlemg28b 38696 cdlemk3 38826 cdlemk5a 38828 cdlemk6 38830 cdlemkuat 38859 cdlemkid2 38917 |
Copyright terms: Public domain | W3C validator |