| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp33l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp33l | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l 1202 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: totprob 34394 cdleme19b 40283 cdleme19d 40285 cdleme19e 40286 cdleme20h 40295 cdleme20l2 40300 cdleme20m 40302 cdleme21d 40309 cdleme21e 40310 cdleme22e 40323 cdleme22f2 40326 cdleme22g 40327 cdleme26e 40338 cdleme28a 40349 cdleme28b 40350 cdleme37m 40441 cdleme39n 40445 cdlemeg46gfre 40511 cdlemg28a 40672 cdlemg28b 40682 cdlemk3 40812 cdlemk5a 40814 cdlemk6 40816 cdlemkuat 40845 cdlemkid2 40903 |
| Copyright terms: Public domain | W3C validator |