MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33l Structured version   Visualization version   GIF version

Theorem simp33l 1299
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33l ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simp33l
StepHypRef Expression
1 simp3l 1200 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜑)
213ad2ant3 1134 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  totprob  32394  cdleme19b  38318  cdleme19d  38320  cdleme19e  38321  cdleme20h  38330  cdleme20l2  38335  cdleme20m  38337  cdleme21d  38344  cdleme21e  38345  cdleme22e  38358  cdleme22f2  38361  cdleme22g  38362  cdleme26e  38373  cdleme28a  38384  cdleme28b  38385  cdleme37m  38476  cdleme39n  38480  cdlemeg46gfre  38546  cdlemg28a  38707  cdlemg28b  38717  cdlemk3  38847  cdlemk5a  38849  cdlemk6  38851  cdlemkuat  38880  cdlemkid2  38938
  Copyright terms: Public domain W3C validator