MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33l Structured version   Visualization version   GIF version

Theorem simp33l 1301
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33l ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simp33l
StepHypRef Expression
1 simp3l 1202 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜑)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34461  cdleme19b  40423  cdleme19d  40425  cdleme19e  40426  cdleme20h  40435  cdleme20l2  40440  cdleme20m  40442  cdleme21d  40449  cdleme21e  40450  cdleme22e  40463  cdleme22f2  40466  cdleme22g  40467  cdleme26e  40478  cdleme28a  40489  cdleme28b  40490  cdleme37m  40581  cdleme39n  40585  cdlemeg46gfre  40651  cdlemg28a  40812  cdlemg28b  40822  cdlemk3  40952  cdlemk5a  40954  cdlemk6  40956  cdlemkuat  40985  cdlemkid2  41043
  Copyright terms: Public domain W3C validator