MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33l Structured version   Visualization version   GIF version

Theorem simp33l 1301
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33l ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simp33l
StepHypRef Expression
1 simp3l 1202 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜑)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34459  cdleme19b  40323  cdleme19d  40325  cdleme19e  40326  cdleme20h  40335  cdleme20l2  40340  cdleme20m  40342  cdleme21d  40349  cdleme21e  40350  cdleme22e  40363  cdleme22f2  40366  cdleme22g  40367  cdleme26e  40378  cdleme28a  40389  cdleme28b  40390  cdleme37m  40481  cdleme39n  40485  cdlemeg46gfre  40551  cdlemg28a  40712  cdlemg28b  40722  cdlemk3  40852  cdlemk5a  40854  cdlemk6  40856  cdlemkuat  40885  cdlemkid2  40943
  Copyright terms: Public domain W3C validator