![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk5a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk.l | ⊢ ≤ = (le‘𝐾) |
cdlemk.j | ⊢ ∨ = (join‘𝐾) |
cdlemk.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
cdlemk5a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ ((𝑋‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1197 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ HL) | |
2 | simp1r 1198 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐻) | |
3 | simp21 1206 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ∈ 𝑇) | |
4 | simp22 1207 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ∈ 𝑇) | |
5 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) | |
6 | cdlemk.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | cdlemk.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | cdlemk.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | cdlemk.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | cdlemk.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | cdlemk.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | cdlemk.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
13 | cdlemk.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
14 | 6, 7, 8, 9, 10, 11, 12, 13 | cdlemk3 39507 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝐹‘𝑃)) |
15 | 1, 2, 3, 4, 5, 14 | syl221anc 1381 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝐹‘𝑃)) |
16 | simp23 1208 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑋 ∈ 𝑇) | |
17 | simp33l 1300 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑃 ∈ 𝐴) | |
18 | simp33r 1301 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ¬ 𝑃 ≤ 𝑊) | |
19 | 6, 7, 8, 9, 10, 11, 12, 13 | cdlemk4 39508 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ≤ ((𝑋‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
20 | 1, 2, 3, 16, 17, 18, 19 | syl222anc 1386 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹‘𝑃) ≤ ((𝑋‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
21 | 15, 20 | eqbrtrd 5163 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ ((𝑋‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 class class class wbr 5141 I cid 5566 ◡ccnv 5668 ↾ cres 5671 ∘ ccom 5673 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 lecple 17186 joincjn 18246 meetcmee 18247 Atomscatm 37936 HLchlt 38023 LHypclh 38658 LTrncltrn 38775 trLctrl 38832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-riotaBAD 37626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-1st 7957 df-2nd 7958 df-undef 8240 df-map 8805 df-proset 18230 df-poset 18248 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-oposet 37849 df-ol 37851 df-oml 37852 df-covers 37939 df-ats 37940 df-atl 37971 df-cvlat 37995 df-hlat 38024 df-llines 38172 df-lplanes 38173 df-lvols 38174 df-lines 38175 df-psubsp 38177 df-pmap 38178 df-padd 38470 df-lhyp 38662 df-laut 38663 df-ldil 38778 df-ltrn 38779 df-trl 38833 |
This theorem is referenced by: cdlemk5 39510 cdlemk5auN 39534 cdlemk5u 39535 |
Copyright terms: Public domain | W3C validator |