Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22f2 Structured version   Visualization version   GIF version

Theorem cdleme22f2 37984
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme22f 37983 with s and t swapped (this case is not mentioned by them). If s t v, then f(s) fs(t) v. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22f2.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22f2.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme22f2.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme22f2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝑁 𝑉))

Proof of Theorem cdleme22f2
StepHypRef Expression
1 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp2r 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
41, 2, 33jca 1129 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
5 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
6 simp31l 1297 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆𝐴)
7 simp33 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉𝐴𝑉 𝑊))
8 simp32l 1299 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆𝑇)
98necomd 2989 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑇𝑆)
10 simp32r 1300 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆 (𝑇 𝑉))
11 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
12 hlcvl 36996 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1311, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ CvLat)
14 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑇𝐴)
15 simp33l 1301 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
16 simp33r 1302 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉 𝑊)
17 simp31r 1298 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑆 𝑊)
18 nbrne2 5050 . . . . . . 7 ((𝑉 𝑊 ∧ ¬ 𝑆 𝑊) → 𝑉𝑆)
1918necomd 2989 . . . . . 6 ((𝑉 𝑊 ∧ ¬ 𝑆 𝑊) → 𝑆𝑉)
2016, 17, 19syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆𝑉)
21 cdleme22.l . . . . . 6 = (le‘𝐾)
22 cdleme22.j . . . . . 6 = (join‘𝐾)
23 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2421, 22, 23cvlatexch2 36974 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑇𝐴𝑉𝐴) ∧ 𝑆𝑉) → (𝑆 (𝑇 𝑉) → 𝑇 (𝑆 𝑉)))
2513, 6, 14, 15, 20, 24syl131anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆 (𝑇 𝑉) → 𝑇 (𝑆 𝑉)))
2610, 25mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑇 (𝑆 𝑉))
27 cdleme22.m . . . 4 = (meet‘𝐾)
28 cdleme22.h . . . 4 𝐻 = (LHyp‘𝐾)
29 cdleme22f2.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
30 cdleme22f2.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
31 cdleme22f2.n . . . 4 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑆) 𝑊)))
3221, 22, 27, 23, 28, 29, 30, 31cdleme22f 37983 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑇𝑆𝑇 (𝑆 𝑉))) → 𝑁 (𝐹 𝑉))
334, 5, 6, 7, 9, 26, 32syl132anc 1389 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑁 (𝐹 𝑉))
34 simp31 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
35 simp133 1311 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝑄)
36 simp132 1310 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑇 (𝑃 𝑄))
37 simp131 1309 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑆 (𝑃 𝑄))
3821, 22, 27, 23, 28, 29, 30, 31cdleme7ga 37885 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑁𝐴)
394, 5, 34, 35, 36, 37, 38syl123anc 1388 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑁𝐴)
4021, 22, 27, 23, 28, 29, 30cdleme3fa 37873 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
411, 2, 3, 34, 35, 37, 40syl132anc 1389 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹𝐴)
4221, 22, 27, 23, 28, 29, 30, 31cdleme7 37886 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑁 𝑊)
434, 5, 34, 35, 36, 37, 42syl123anc 1388 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑁 𝑊)
44 nbrne2 5050 . . . . 5 ((𝑉 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑉𝑁)
4544necomd 2989 . . . 4 ((𝑉 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑁𝑉)
4616, 43, 45syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑁𝑉)
4721, 22, 23cvlatexch2 36974 . . 3 ((𝐾 ∈ CvLat ∧ (𝑁𝐴𝐹𝐴𝑉𝐴) ∧ 𝑁𝑉) → (𝑁 (𝐹 𝑉) → 𝐹 (𝑁 𝑉)))
4813, 39, 41, 15, 46, 47syl131anc 1384 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑁 (𝐹 𝑉) → 𝐹 (𝑁 𝑉)))
4933, 48mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆𝑇𝑆 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝑁 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  (class class class)co 7170  lecple 16675  joincjn 17670  meetcmee 17671  Atomscatm 36900  CvLatclc 36902  HLchlt 36987  LHypclh 37621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625
This theorem is referenced by:  cdleme26f2ALTN  38001  cdleme26f2  38002
  Copyright terms: Public domain W3C validator