MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr31 Structured version   Visualization version   GIF version

Theorem simpr31 1264
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr31 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simpr31
StepHypRef Expression
1 simpr1 1195 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17643  subccatid  17771  fuccatid  17897  setccatid  18009  catccatid  18031  estrccatid  18056  xpccatid  18112  nllyidm  23392  utoptop  24138  cgr3tr4  36025  seglecgr12im  36083  paddasslem9  39807  cdlemd1  40177  cdlemf2  40541  cdlemk34  40889  dihmeetlem18N  41303  dihmeetlem19N  41304  ssccatid  49058  isthincd2  49423  mndtccatid  49573
  Copyright terms: Public domain W3C validator