MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr31 Structured version   Visualization version   GIF version

Theorem simpr31 1262
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr31 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simpr31
StepHypRef Expression
1 simpr1 1193 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2antr3 1189 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  oppccatid  17527  subccatid  17658  fuccatid  17784  setccatid  17896  catccatid  17918  estrccatid  17945  xpccatid  18002  nllyidm  22746  utoptop  23492  cgr3tr4  34450  seglecgr12im  34508  paddasslem9  38104  cdlemd1  38474  cdlemf2  38838  cdlemk34  39186  dihmeetlem18N  39600  dihmeetlem19N  39601  isthincd2  46678  mndtccatid  46733
  Copyright terms: Public domain W3C validator