MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr31 Structured version   Visualization version   GIF version

Theorem simpr31 1264
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr31 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simpr31
StepHypRef Expression
1 simpr1 1195 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17622  subccatid  17750  fuccatid  17876  setccatid  17988  catccatid  18010  estrccatid  18035  xpccatid  18091  nllyidm  23402  utoptop  24147  cgr3tr4  36085  seglecgr12im  36143  paddasslem9  39866  cdlemd1  40236  cdlemf2  40600  cdlemk34  40948  dihmeetlem18N  41362  dihmeetlem19N  41363  ssccatid  49103  isthincd2  49468  mndtccatid  49618
  Copyright terms: Public domain W3C validator