MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr31 Structured version   Visualization version   GIF version

Theorem simpr31 1264
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr31 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simpr31
StepHypRef Expression
1 simpr1 1195 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17687  subccatid  17815  fuccatid  17941  setccatid  18053  catccatid  18075  estrccatid  18100  xpccatid  18156  nllyidm  23383  utoptop  24129  cgr3tr4  36047  seglecgr12im  36105  paddasslem9  39829  cdlemd1  40199  cdlemf2  40563  cdlemk34  40911  dihmeetlem18N  41325  dihmeetlem19N  41326  ssccatid  49065  isthincd2  49430  mndtccatid  49580
  Copyright terms: Public domain W3C validator