![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr31 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr31 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1195 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: oppccatid 17665 subccatid 17796 fuccatid 17922 setccatid 18034 catccatid 18056 estrccatid 18083 xpccatid 18140 nllyidm 22993 utoptop 23739 cgr3tr4 35055 seglecgr12im 35113 paddasslem9 38747 cdlemd1 39117 cdlemf2 39481 cdlemk34 39829 dihmeetlem18N 40243 dihmeetlem19N 40244 isthincd2 47706 mndtccatid 47761 |
Copyright terms: Public domain | W3C validator |