| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr31 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr31 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oppccatid 17687 subccatid 17815 fuccatid 17941 setccatid 18053 catccatid 18075 estrccatid 18100 xpccatid 18156 nllyidm 23383 utoptop 24129 cgr3tr4 36047 seglecgr12im 36105 paddasslem9 39829 cdlemd1 40199 cdlemf2 40563 cdlemk34 40911 dihmeetlem18N 41325 dihmeetlem19N 41326 ssccatid 49065 isthincd2 49430 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |