MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr31 Structured version   Visualization version   GIF version

Theorem simpr31 1261
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr31 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simpr31
StepHypRef Expression
1 simpr1 1192 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2antr3 1188 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  oppccatid  17411  subccatid  17542  fuccatid  17668  setccatid  17780  catccatid  17802  estrccatid  17829  xpccatid  17886  nllyidm  22621  utoptop  23367  cgr3tr4  34333  seglecgr12im  34391  paddasslem9  37821  cdlemd1  38191  cdlemf2  38555  cdlemk34  38903  dihmeetlem18N  39317  dihmeetlem19N  39318  isthincd2  46271  mndtccatid  46326
  Copyright terms: Public domain W3C validator