| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr31 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr31 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oppccatid 17627 subccatid 17755 fuccatid 17881 setccatid 17993 catccatid 18015 estrccatid 18040 xpccatid 18096 nllyidm 23405 utoptop 24150 cgr3tr4 36117 seglecgr12im 36175 paddasslem9 39947 cdlemd1 40317 cdlemf2 40681 cdlemk34 41029 dihmeetlem18N 41443 dihmeetlem19N 41444 ssccatid 49197 isthincd2 49562 mndtccatid 49712 |
| Copyright terms: Public domain | W3C validator |