Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr31 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr31 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2antr3 1190 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: oppccatid 17475 subccatid 17606 fuccatid 17732 setccatid 17844 catccatid 17866 estrccatid 17893 xpccatid 17950 nllyidm 22685 utoptop 23431 cgr3tr4 34399 seglecgr12im 34457 paddasslem9 37884 cdlemd1 38254 cdlemf2 38618 cdlemk34 38966 dihmeetlem18N 39380 dihmeetlem19N 39381 isthincd2 46377 mndtccatid 46432 |
Copyright terms: Public domain | W3C validator |