MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr31 Structured version   Visualization version   GIF version

Theorem simpr31 1263
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr31 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simpr31
StepHypRef Expression
1 simpr1 1194 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2antr3 1190 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089
This theorem is referenced by:  oppccatid  17475  subccatid  17606  fuccatid  17732  setccatid  17844  catccatid  17866  estrccatid  17893  xpccatid  17950  nllyidm  22685  utoptop  23431  cgr3tr4  34399  seglecgr12im  34457  paddasslem9  37884  cdlemd1  38254  cdlemf2  38618  cdlemk34  38966  dihmeetlem18N  39380  dihmeetlem19N  39381  isthincd2  46377  mndtccatid  46432
  Copyright terms: Public domain W3C validator