Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr31 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr31 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1192 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2antr3 1188 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: oppccatid 17411 subccatid 17542 fuccatid 17668 setccatid 17780 catccatid 17802 estrccatid 17829 xpccatid 17886 nllyidm 22621 utoptop 23367 cgr3tr4 34333 seglecgr12im 34391 paddasslem9 37821 cdlemd1 38191 cdlemf2 38555 cdlemk34 38903 dihmeetlem18N 39317 dihmeetlem19N 39318 isthincd2 46271 mndtccatid 46326 |
Copyright terms: Public domain | W3C validator |