MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Structured version   Visualization version   GIF version

Theorem simpr32 1264
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr32 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simpr32
StepHypRef Expression
1 simpr2 1195 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2antr3 1190 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17734  subccatid  17863  fuccatid  17989  setccatid  18101  catccatid  18123  estrccatid  18148  xpccatid  18204  nllyidm  23444  utoptop  24190  omndmul2  33033  cgr3tr4  36028  paddasslem9  39805  cdlemd1  40175  cdlemf2  40539  cdlemk34  40887  dihmeetlem18N  41301  isthincd2  49138  mndtccatid  49279
  Copyright terms: Public domain W3C validator