MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Structured version   Visualization version   GIF version

Theorem simpr32 1262
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr32 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simpr32
StepHypRef Expression
1 simpr2 1193 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2antr3 1188 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  oppccatid  17347  subccatid  17477  fuccatid  17603  setccatid  17715  catccatid  17737  estrccatid  17764  xpccatid  17821  nllyidm  22548  utoptop  23294  omndmul2  31240  cgr3tr4  34281  paddasslem9  37769  cdlemd1  38139  cdlemf2  38503  cdlemk34  38851  dihmeetlem18N  39265  isthincd2  46207  mndtccatid  46260
  Copyright terms: Public domain W3C validator