MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Structured version   Visualization version   GIF version

Theorem simpr32 1263
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr32 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simpr32
StepHypRef Expression
1 simpr2 1194 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2antr3 1189 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  oppccatid  17430  subccatid  17561  fuccatid  17687  setccatid  17799  catccatid  17821  estrccatid  17848  xpccatid  17905  nllyidm  22640  utoptop  23386  omndmul2  31338  cgr3tr4  34354  paddasslem9  37842  cdlemd1  38212  cdlemf2  38576  cdlemk34  38924  dihmeetlem18N  39338  isthincd2  46319  mndtccatid  46374
  Copyright terms: Public domain W3C validator