MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Structured version   Visualization version   GIF version

Theorem simpr32 1265
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr32 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simpr32
StepHypRef Expression
1 simpr2 1196 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17736  subccatid  17864  fuccatid  17990  setccatid  18102  catccatid  18124  estrccatid  18149  xpccatid  18205  nllyidm  23432  utoptop  24178  omndmul2  33085  cgr3tr4  36075  paddasslem9  39852  cdlemd1  40222  cdlemf2  40586  cdlemk34  40934  dihmeetlem18N  41348  ssccatid  49006  isthincd2  49290  mndtccatid  49431
  Copyright terms: Public domain W3C validator