MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Structured version   Visualization version   GIF version

Theorem simpr32 1265
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr32 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simpr32
StepHypRef Expression
1 simpr2 1196 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17680  subccatid  17808  fuccatid  17934  setccatid  18046  catccatid  18068  estrccatid  18093  xpccatid  18149  nllyidm  23376  utoptop  24122  omndmul2  33026  cgr3tr4  36040  paddasslem9  39822  cdlemd1  40192  cdlemf2  40556  cdlemk34  40904  dihmeetlem18N  41318  ssccatid  49058  isthincd2  49423  mndtccatid  49573
  Copyright terms: Public domain W3C validator