MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setccatid Structured version   Visualization version   GIF version

Theorem setccatid 17993
Description: Lemma for setccat 17994. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
setccat.c 𝐶 = (SetCat‘𝑈)
Assertion
Ref Expression
setccatid (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ 𝑥))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem setccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setccat.c . . 3 𝐶 = (SetCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
31, 2setcbas 17987 . 2 (𝑈𝑉𝑈 = (Base‘𝐶))
4 eqidd 2734 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
5 eqidd 2734 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
61fvexi 6842 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 261 . 2 (((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 f1oi 6806 . . . 4 ( I ↾ 𝑥):𝑥1-1-onto𝑥
10 f1of 6768 . . . 4 (( I ↾ 𝑥):𝑥1-1-onto𝑥 → ( I ↾ 𝑥):𝑥𝑥)
119, 10mp1i 13 . . 3 ((𝑈𝑉𝑥𝑈) → ( I ↾ 𝑥):𝑥𝑥)
12 simpl 482 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑈𝑉)
13 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
14 simpr 484 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑥𝑈)
151, 12, 13, 14, 14elsetchom 17990 . . 3 ((𝑈𝑉𝑥𝑈) → (( I ↾ 𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥) ↔ ( I ↾ 𝑥):𝑥𝑥))
1611, 15mpbird 257 . 2 ((𝑈𝑉𝑥𝑈) → ( I ↾ 𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
17 simpl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
18 eqid 2733 . . . 4 (comp‘𝐶) = (comp‘𝐶)
19 simpr1l 1231 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝑈)
20 simpr1r 1232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝑈)
21 simpr31 1264 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
221, 17, 13, 19, 20elsetchom 17990 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓:𝑤𝑥))
2321, 22mpbid 232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓:𝑤𝑥)
249, 10mp1i 13 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ 𝑥):𝑥𝑥)
251, 17, 18, 19, 20, 20, 23, 24setcco 17992 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ 𝑥)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ 𝑥) ∘ 𝑓))
26 fcoi2 6703 . . . 4 (𝑓:𝑤𝑥 → (( I ↾ 𝑥) ∘ 𝑓) = 𝑓)
2723, 26syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ 𝑥) ∘ 𝑓) = 𝑓)
2825, 27eqtrd 2768 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ 𝑥)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
29 simpr2l 1233 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝑈)
30 simpr32 1265 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
311, 17, 13, 20, 29elsetchom 17990 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔:𝑥𝑦))
3230, 31mpbid 232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔:𝑥𝑦)
331, 17, 18, 20, 20, 29, 24, 32setcco 17992 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ 𝑥)) = (𝑔 ∘ ( I ↾ 𝑥)))
34 fcoi1 6702 . . . 4 (𝑔:𝑥𝑦 → (𝑔 ∘ ( I ↾ 𝑥)) = 𝑔)
3532, 34syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ ( I ↾ 𝑥)) = 𝑔)
3633, 35eqtrd 2768 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ 𝑥)) = 𝑔)
371, 17, 18, 19, 20, 29, 23, 32setcco 17992 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
38 fco 6680 . . . . 5 ((𝑔:𝑥𝑦𝑓:𝑤𝑥) → (𝑔𝑓):𝑤𝑦)
3932, 23, 38syl2anc 584 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓):𝑤𝑦)
401, 17, 13, 19, 29elsetchom 17990 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦) ↔ (𝑔𝑓):𝑤𝑦))
4139, 40mpbird 257 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
4237, 41eqeltrd 2833 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
43 coass 6218 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
44 simpr2r 1234 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
45 simpr33 1266 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
461, 17, 13, 29, 44elsetchom 17990 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ :𝑦𝑧))
4745, 46mpbid 232 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → :𝑦𝑧)
48 fco 6680 . . . . . 6 ((:𝑦𝑧𝑔:𝑥𝑦) → (𝑔):𝑥𝑧)
4947, 32, 48syl2anc 584 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔):𝑥𝑧)
501, 17, 18, 19, 20, 44, 23, 49setcco 17992 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
511, 17, 18, 19, 29, 44, 39, 47setcco 17992 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
5243, 50, 513eqtr4a 2794 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
531, 17, 18, 20, 29, 44, 32, 47setcco 17992 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
5453oveq1d 7367 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
5537oveq2d 7368 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
5652, 54, 553eqtr4d 2778 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
573, 4, 5, 7, 8, 16, 28, 36, 42, 56iscatd2 17589 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cmpt 5174   I cid 5513  cres 5621  ccom 5623  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Hom chom 17174  compcco 17175  Catccat 17572  Idccid 17573  SetCatcsetc 17984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-setc 17985
This theorem is referenced by:  setccat  17994  setcid  17995
  Copyright terms: Public domain W3C validator