MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrccatid Structured version   Visualization version   GIF version

Theorem estrccatid 18200
Description: Lemma for estrccat 18201. (Contributed by AV, 8-Mar-2020.)
Hypothesis
Ref Expression
estrccat.c 𝐶 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
estrccatid (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem estrccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrccat.c . . 3 𝐶 = (ExtStrCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
31, 2estrcbas 18193 . 2 (𝑈𝑉𝑈 = (Base‘𝐶))
4 eqidd 2741 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
5 eqidd 2741 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
61fvexi 6934 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 261 . 2 (((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 f1oi 6900 . . . 4 ( I ↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥)
10 f1of 6862 . . . 4 (( I ↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
119, 10mp1i 13 . . 3 ((𝑈𝑉𝑥𝑈) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
12 simpl 482 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑈𝑉)
13 eqid 2740 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
14 simpr 484 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑥𝑈)
15 eqid 2740 . . . 4 (Base‘𝑥) = (Base‘𝑥)
161, 12, 13, 14, 14, 15, 15elestrchom 18196 . . 3 ((𝑈𝑉𝑥𝑈) → (( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥) ↔ ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥)))
1711, 16mpbird 257 . 2 ((𝑈𝑉𝑥𝑈) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
18 simpl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
19 eqid 2740 . . . 4 (comp‘𝐶) = (comp‘𝐶)
20 simpr1l 1230 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝑈)
21 simpr1r 1231 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝑈)
22 eqid 2740 . . . 4 (Base‘𝑤) = (Base‘𝑤)
23 simpr31 1263 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
241, 18, 13, 20, 21, 22, 15elestrchom 18196 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
2523, 24mpbid 232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))
269, 10mp1i 13 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
271, 18, 19, 20, 21, 21, 22, 15, 15, 25, 26estrcco 18198 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
28 fcoi2 6796 . . . 4 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
2925, 28syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
3027, 29eqtrd 2780 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
31 simpr2l 1232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝑈)
32 eqid 2740 . . . 4 (Base‘𝑦) = (Base‘𝑦)
33 simpr32 1264 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
341, 18, 13, 21, 31, 15, 32elestrchom 18196 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
3533, 34mpbid 232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
361, 18, 19, 21, 21, 31, 15, 15, 32, 26, 35estrcco 18198 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
37 fcoi1 6795 . . . 4 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
3835, 37syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
3936, 38eqtrd 2780 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
401, 18, 19, 20, 21, 31, 22, 15, 32, 25, 35estrcco 18198 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
41 fco 6771 . . . . 5 ((𝑔:(Base‘𝑥)⟶(Base‘𝑦) ∧ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)) → (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦))
4235, 25, 41syl2anc 583 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦))
431, 18, 13, 20, 31, 22, 32elestrchom 18196 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦) ↔ (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦)))
4442, 43mpbird 257 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
4540, 44eqeltrd 2844 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
46 coass 6296 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
47 simpr2r 1233 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
48 eqid 2740 . . . . 5 (Base‘𝑧) = (Base‘𝑧)
49 simpr33 1265 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
501, 18, 13, 31, 47, 32, 48elestrchom 18196 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ :(Base‘𝑦)⟶(Base‘𝑧)))
5149, 50mpbid 232 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → :(Base‘𝑦)⟶(Base‘𝑧))
52 fco 6771 . . . . . 6 ((:(Base‘𝑦)⟶(Base‘𝑧) ∧ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) → (𝑔):(Base‘𝑥)⟶(Base‘𝑧))
5351, 35, 52syl2anc 583 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔):(Base‘𝑥)⟶(Base‘𝑧))
541, 18, 19, 20, 21, 47, 22, 15, 48, 25, 53estrcco 18198 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
551, 18, 19, 20, 31, 47, 22, 32, 48, 42, 51estrcco 18198 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
5646, 54, 553eqtr4a 2806 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
571, 18, 19, 21, 31, 47, 15, 32, 48, 35, 51estrcco 18198 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
5857oveq1d 7463 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
5940oveq2d 7464 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
6056, 58, 593eqtr4d 2790 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
613, 4, 5, 7, 8, 17, 30, 39, 45, 60iscatd2 17739 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  ExtStrCatcestrc 18190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-estrc 18191
This theorem is referenced by:  estrccat  18201  estrcid  18202
  Copyright terms: Public domain W3C validator