Step | Hyp | Ref
| Expression |
1 | | estrccat.c |
. . 3
⊢ 𝐶 = (ExtStrCat‘𝑈) |
2 | | id 22 |
. . 3
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉) |
3 | 1, 2 | estrcbas 17841 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝑈 = (Base‘𝐶)) |
4 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
5 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (comp‘𝐶) = (comp‘𝐶)) |
6 | 1 | fvexi 6788 |
. . 3
⊢ 𝐶 ∈ V |
7 | 6 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
8 | | biid 260 |
. 2
⊢ (((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) |
9 | | f1oi 6754 |
. . . 4
⊢ ( I
↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥) |
10 | | f1of 6716 |
. . . 4
⊢ (( I
↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥)) |
11 | 9, 10 | mp1i 13 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥)) |
12 | | simpl 483 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑉) |
13 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
14 | | simpr 485 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
15 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑥) =
(Base‘𝑥) |
16 | 1, 12, 13, 14, 14, 15, 15 | elestrchom 17844 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈) → (( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥) ↔ ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))) |
17 | 11, 16 | mpbird 256 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
18 | | simpl 483 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈 ∈ 𝑉) |
19 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
20 | | simpr1l 1229 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤 ∈ 𝑈) |
21 | | simpr1r 1230 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ 𝑈) |
22 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑤) =
(Base‘𝑤) |
23 | | simpr31 1262 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥)) |
24 | 1, 18, 13, 20, 21, 22, 15 | elestrchom 17844 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓:(Base‘𝑤)⟶(Base‘𝑥))) |
25 | 23, 24 | mpbid 231 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥)) |
26 | 9, 10 | mp1i 13 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥)) |
27 | 1, 18, 19, 20, 21, 21, 22, 15, 15, 25, 26 | estrcco 17846 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓)) |
28 | | fcoi2 6649 |
. . . 4
⊢ (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
29 | 25, 28 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓) |
30 | 27, 29 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
31 | | simpr2l 1231 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ 𝑈) |
32 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑦) =
(Base‘𝑦) |
33 | | simpr32 1263 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
34 | 1, 18, 13, 21, 31, 15, 32 | elestrchom 17844 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔:(Base‘𝑥)⟶(Base‘𝑦))) |
35 | 33, 34 | mpbid 231 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) |
36 | 1, 18, 19, 21, 21, 31, 15, 15, 32, 26, 35 | estrcco 17846 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥)))) |
37 | | fcoi1 6648 |
. . . 4
⊢ (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
38 | 35, 37 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔) |
39 | 36, 38 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔) |
40 | 1, 18, 19, 20, 21, 31, 22, 15, 32, 25, 35 | estrcco 17846 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) = (𝑔 ∘ 𝑓)) |
41 | | fco 6624 |
. . . . 5
⊢ ((𝑔:(Base‘𝑥)⟶(Base‘𝑦) ∧ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)) → (𝑔 ∘ 𝑓):(Base‘𝑤)⟶(Base‘𝑦)) |
42 | 35, 25, 41 | syl2anc 584 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ 𝑓):(Base‘𝑤)⟶(Base‘𝑦)) |
43 | 1, 18, 13, 20, 31, 22, 32 | elestrchom 17844 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔 ∘ 𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦) ↔ (𝑔 ∘ 𝑓):(Base‘𝑤)⟶(Base‘𝑦))) |
44 | 42, 43 | mpbird 256 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ 𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦)) |
45 | 40, 44 | eqeltrd 2839 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦)) |
46 | | coass 6169 |
. . . 4
⊢ ((ℎ ∘ 𝑔) ∘ 𝑓) = (ℎ ∘ (𝑔 ∘ 𝑓)) |
47 | | simpr2r 1232 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ 𝑈) |
48 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑧) =
(Base‘𝑧) |
49 | | simpr33 1264 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) |
50 | 1, 18, 13, 31, 47, 32, 48 | elestrchom 17844 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ ℎ:(Base‘𝑦)⟶(Base‘𝑧))) |
51 | 49, 50 | mpbid 231 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ:(Base‘𝑦)⟶(Base‘𝑧)) |
52 | | fco 6624 |
. . . . . 6
⊢ ((ℎ:(Base‘𝑦)⟶(Base‘𝑧) ∧ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) → (ℎ ∘ 𝑔):(Base‘𝑥)⟶(Base‘𝑧)) |
53 | 51, 35, 52 | syl2anc 584 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ ∘ 𝑔):(Base‘𝑥)⟶(Base‘𝑧)) |
54 | 1, 18, 19, 20, 21, 47, 22, 15, 48, 25, 53 | estrcco 17846 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔) ∘ 𝑓)) |
55 | 1, 18, 19, 20, 31, 47, 22, 32, 48, 42, 51 | estrcco 17846 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓)) = (ℎ ∘ (𝑔 ∘ 𝑓))) |
56 | 46, 54, 55 | 3eqtr4a 2804 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
57 | 1, 18, 19, 21, 31, 47, 15, 32, 48, 35, 51 | estrcco 17846 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) = (ℎ ∘ 𝑔)) |
58 | 57 | oveq1d 7290 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘ 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓)) |
59 | 40 | oveq2d 7291 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓)) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘ 𝑓))) |
60 | 56, 58, 59 | 3eqtr4d 2788 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
61 | 3, 4, 5, 7, 8, 17,
30, 39, 45, 60 | iscatd2 17390 |
1
⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝑈 ↦ ( I ↾ (Base‘𝑥))))) |