MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrccatid Structured version   Visualization version   GIF version

Theorem estrccatid 18038
Description: Lemma for estrccat 18039. (Contributed by AV, 8-Mar-2020.)
Hypothesis
Ref Expression
estrccat.c 𝐶 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
estrccatid (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem estrccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrccat.c . . 3 𝐶 = (ExtStrCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
31, 2estrcbas 18031 . 2 (𝑈𝑉𝑈 = (Base‘𝐶))
4 eqidd 2730 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
5 eqidd 2730 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
61fvexi 6836 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 261 . 2 (((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 f1oi 6802 . . . 4 ( I ↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥)
10 f1of 6764 . . . 4 (( I ↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
119, 10mp1i 13 . . 3 ((𝑈𝑉𝑥𝑈) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
12 simpl 482 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑈𝑉)
13 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
14 simpr 484 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑥𝑈)
15 eqid 2729 . . . 4 (Base‘𝑥) = (Base‘𝑥)
161, 12, 13, 14, 14, 15, 15elestrchom 18034 . . 3 ((𝑈𝑉𝑥𝑈) → (( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥) ↔ ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥)))
1711, 16mpbird 257 . 2 ((𝑈𝑉𝑥𝑈) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
18 simpl 482 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
19 eqid 2729 . . . 4 (comp‘𝐶) = (comp‘𝐶)
20 simpr1l 1231 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝑈)
21 simpr1r 1232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝑈)
22 eqid 2729 . . . 4 (Base‘𝑤) = (Base‘𝑤)
23 simpr31 1264 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
241, 18, 13, 20, 21, 22, 15elestrchom 18034 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
2523, 24mpbid 232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))
269, 10mp1i 13 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
271, 18, 19, 20, 21, 21, 22, 15, 15, 25, 26estrcco 18036 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
28 fcoi2 6699 . . . 4 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
2925, 28syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
3027, 29eqtrd 2764 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
31 simpr2l 1233 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝑈)
32 eqid 2729 . . . 4 (Base‘𝑦) = (Base‘𝑦)
33 simpr32 1265 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
341, 18, 13, 21, 31, 15, 32elestrchom 18034 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
3533, 34mpbid 232 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
361, 18, 19, 21, 21, 31, 15, 15, 32, 26, 35estrcco 18036 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
37 fcoi1 6698 . . . 4 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
3835, 37syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
3936, 38eqtrd 2764 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
401, 18, 19, 20, 21, 31, 22, 15, 32, 25, 35estrcco 18036 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
41 fco 6676 . . . . 5 ((𝑔:(Base‘𝑥)⟶(Base‘𝑦) ∧ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)) → (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦))
4235, 25, 41syl2anc 584 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦))
431, 18, 13, 20, 31, 22, 32elestrchom 18034 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦) ↔ (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦)))
4442, 43mpbird 257 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
4540, 44eqeltrd 2828 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
46 coass 6214 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
47 simpr2r 1234 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
48 eqid 2729 . . . . 5 (Base‘𝑧) = (Base‘𝑧)
49 simpr33 1266 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
501, 18, 13, 31, 47, 32, 48elestrchom 18034 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ :(Base‘𝑦)⟶(Base‘𝑧)))
5149, 50mpbid 232 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → :(Base‘𝑦)⟶(Base‘𝑧))
52 fco 6676 . . . . . 6 ((:(Base‘𝑦)⟶(Base‘𝑧) ∧ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) → (𝑔):(Base‘𝑥)⟶(Base‘𝑧))
5351, 35, 52syl2anc 584 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔):(Base‘𝑥)⟶(Base‘𝑧))
541, 18, 19, 20, 21, 47, 22, 15, 48, 25, 53estrcco 18036 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
551, 18, 19, 20, 31, 47, 22, 32, 48, 42, 51estrcco 18036 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
5646, 54, 553eqtr4a 2790 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
571, 18, 19, 21, 31, 47, 15, 32, 48, 35, 51estrcco 18036 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
5857oveq1d 7364 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
5940oveq2d 7365 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
6056, 58, 593eqtr4d 2774 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
613, 4, 5, 7, 8, 17, 30, 39, 45, 60iscatd2 17587 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  cmpt 5173   I cid 5513  cres 5621  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  ExtStrCatcestrc 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-estrc 18029
This theorem is referenced by:  estrccat  18039  estrcid  18040
  Copyright terms: Public domain W3C validator