| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | subccat.1 | . . 3
⊢ 𝐷 = (𝐶 ↾cat 𝐽) | 
| 2 |  | eqid 2737 | . . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 3 |  | subccat.j | . . . 4
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | 
| 4 |  | subcrcl 17860 | . . . 4
⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | 
| 5 | 3, 4 | syl 17 | . . 3
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 6 |  | subccatid.1 | . . 3
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | 
| 7 | 3, 6, 2 | subcss1 17887 | . . 3
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) | 
| 8 | 1, 2, 5, 6, 7 | rescbas 17873 | . 2
⊢ (𝜑 → 𝑆 = (Base‘𝐷)) | 
| 9 | 1, 2, 5, 6, 7 | reschom 17874 | . 2
⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) | 
| 10 |  | eqid 2737 | . . 3
⊢
(comp‘𝐶) =
(comp‘𝐶) | 
| 11 | 1, 2, 5, 6, 7, 10 | rescco 17876 | . 2
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) | 
| 12 | 1 | ovexi 7465 | . . 3
⊢ 𝐷 ∈ V | 
| 13 | 12 | a1i 11 | . 2
⊢ (𝜑 → 𝐷 ∈ V) | 
| 14 |  | biid 261 | . 2
⊢ (((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧))) ↔ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) | 
| 15 | 3 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (Subcat‘𝐶)) | 
| 16 | 6 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 Fn (𝑆 × 𝑆)) | 
| 17 |  | simpr 484 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | 
| 18 |  | subccatid.2 | . . 3
⊢  1 =
(Id‘𝐶) | 
| 19 | 15, 16, 17, 18 | subcidcl 17889 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) | 
| 20 |  | eqid 2737 | . . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 21 | 5 | adantr 480 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat) | 
| 22 | 7 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶)) | 
| 23 |  | simpr1l 1231 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ 𝑆) | 
| 24 | 22, 23 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ (Base‘𝐶)) | 
| 25 |  | simpr1r 1232 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ 𝑆) | 
| 26 | 22, 25 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐶)) | 
| 27 | 3 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 ∈ (Subcat‘𝐶)) | 
| 28 | 6 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆)) | 
| 29 | 27, 28, 20, 23, 25 | subcss2 17888 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑤𝐽𝑥) ⊆ (𝑤(Hom ‘𝐶)𝑥)) | 
| 30 |  | simpr31 1264 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤𝐽𝑥)) | 
| 31 | 29, 30 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥)) | 
| 32 | 2, 20, 18, 21, 24, 10, 26, 31 | catlid 17726 | . 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (( 1 ‘𝑥)(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) | 
| 33 |  | simpr2l 1233 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ 𝑆) | 
| 34 | 22, 33 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐶)) | 
| 35 | 27, 28, 20, 25, 33 | subcss2 17888 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) | 
| 36 |  | simpr32 1265 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥𝐽𝑦)) | 
| 37 | 35, 36 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) | 
| 38 | 2, 20, 18, 21, 26, 10, 34, 37 | catrid 17727 | . 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( 1 ‘𝑥)) = 𝑔) | 
| 39 | 27, 28, 23, 10, 25, 33, 30, 36 | subccocl 17890 | . 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤𝐽𝑦)) | 
| 40 |  | simpr2r 1234 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ 𝑆) | 
| 41 | 22, 40 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐶)) | 
| 42 | 27, 28, 20, 33, 40 | subcss2 17888 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧)) | 
| 43 |  | simpr33 1266 | . . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦𝐽𝑧)) | 
| 44 | 42, 43 | sseldd 3984 | . . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) | 
| 45 | 2, 20, 10, 21, 24, 26, 34, 31, 37, 41, 44 | catass 17729 | . 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) | 
| 46 | 8, 9, 11, 13, 14, 19, 32, 38, 39, 45 | iscatd2 17724 | 1
⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥 ∈ 𝑆 ↦ ( 1 ‘𝑥)))) |