MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subccatid Structured version   Visualization version   GIF version

Theorem subccatid 17561
Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subccat.1 𝐷 = (𝐶cat 𝐽)
subccat.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subccatid.1 (𝜑𝐽 Fn (𝑆 × 𝑆))
subccatid.2 1 = (Id‘𝐶)
Assertion
Ref Expression
subccatid (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥, 1   𝑥,𝐽   𝑥,𝑆

Proof of Theorem subccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subccat.1 . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2738 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 subccat.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
4 subcrcl 17528 . . . 4 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
53, 4syl 17 . . 3 (𝜑𝐶 ∈ Cat)
6 subccatid.1 . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
73, 6, 2subcss1 17557 . . 3 (𝜑𝑆 ⊆ (Base‘𝐶))
81, 2, 5, 6, 7rescbas 17541 . 2 (𝜑𝑆 = (Base‘𝐷))
91, 2, 5, 6, 7reschom 17543 . 2 (𝜑𝐽 = (Hom ‘𝐷))
10 eqid 2738 . . 3 (comp‘𝐶) = (comp‘𝐶)
111, 2, 5, 6, 7, 10rescco 17545 . 2 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
121ovexi 7309 . . 3 𝐷 ∈ V
1312a1i 11 . 2 (𝜑𝐷 ∈ V)
14 biid 260 . 2 (((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧))) ↔ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧))))
153adantr 481 . . 3 ((𝜑𝑥𝑆) → 𝐽 ∈ (Subcat‘𝐶))
166adantr 481 . . 3 ((𝜑𝑥𝑆) → 𝐽 Fn (𝑆 × 𝑆))
17 simpr 485 . . 3 ((𝜑𝑥𝑆) → 𝑥𝑆)
18 subccatid.2 . . 3 1 = (Id‘𝐶)
1915, 16, 17, 18subcidcl 17559 . 2 ((𝜑𝑥𝑆) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
20 eqid 2738 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
215adantr 481 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat)
227adantr 481 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶))
23 simpr1l 1229 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑤𝑆)
2422, 23sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ (Base‘𝐶))
25 simpr1r 1230 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑥𝑆)
2622, 25sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐶))
273adantr 481 . . . . 5 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝐽 ∈ (Subcat‘𝐶))
286adantr 481 . . . . 5 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆))
2927, 28, 20, 23, 25subcss2 17558 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑤𝐽𝑥) ⊆ (𝑤(Hom ‘𝐶)𝑥))
30 simpr31 1262 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤𝐽𝑥))
3129, 30sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
322, 20, 18, 21, 24, 10, 26, 31catlid 17392 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (( 1𝑥)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
33 simpr2l 1231 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑦𝑆)
3422, 33sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐶))
3527, 28, 20, 25, 33subcss2 17558 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
36 simpr32 1263 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥𝐽𝑦))
3735, 36sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
382, 20, 18, 21, 26, 10, 34, 37catrid 17393 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( 1𝑥)) = 𝑔)
3927, 28, 23, 10, 25, 33, 30, 36subccocl 17560 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤𝐽𝑦))
40 simpr2r 1232 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑧𝑆)
4122, 40sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐶))
4227, 28, 20, 33, 40subcss2 17558 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧))
43 simpr33 1264 . . . 4 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → ∈ (𝑦𝐽𝑧))
4442, 43sseldd 3922 . . 3 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
452, 20, 10, 21, 24, 26, 34, 31, 37, 41, 44catass 17395 . 2 ((𝜑 ∧ ((𝑤𝑆𝑥𝑆) ∧ (𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ∈ (𝑦𝐽𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
468, 9, 11, 13, 14, 19, 32, 38, 39, 45iscatd2 17390 1 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cmpt 5157   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374  cat cresc 17520  Subcatcsubc 17521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-homf 17379  df-ssc 17522  df-resc 17523  df-subc 17524
This theorem is referenced by:  subcid  17562  subccat  17563
  Copyright terms: Public domain W3C validator