Step | Hyp | Ref
| Expression |
1 | | subccat.1 |
. . 3
⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | subccat.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
4 | | subcrcl 17445 |
. . . 4
⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
6 | | subccatid.1 |
. . 3
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
7 | 3, 6, 2 | subcss1 17473 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
8 | 1, 2, 5, 6, 7 | rescbas 17458 |
. 2
⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
9 | 1, 2, 5, 6, 7 | reschom 17460 |
. 2
⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
10 | | eqid 2738 |
. . 3
⊢
(comp‘𝐶) =
(comp‘𝐶) |
11 | 1, 2, 5, 6, 7, 10 | rescco 17462 |
. 2
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
12 | 1 | ovexi 7289 |
. . 3
⊢ 𝐷 ∈ V |
13 | 12 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 ∈ V) |
14 | | biid 260 |
. 2
⊢ (((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧))) ↔ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) |
15 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (Subcat‘𝐶)) |
16 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 Fn (𝑆 × 𝑆)) |
17 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
18 | | subccatid.2 |
. . 3
⊢ 1 =
(Id‘𝐶) |
19 | 15, 16, 17, 18 | subcidcl 17475 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
20 | | eqid 2738 |
. . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
21 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat) |
22 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶)) |
23 | | simpr1l 1228 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ 𝑆) |
24 | 22, 23 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ (Base‘𝐶)) |
25 | | simpr1r 1229 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ 𝑆) |
26 | 22, 25 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐶)) |
27 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 ∈ (Subcat‘𝐶)) |
28 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆)) |
29 | 27, 28, 20, 23, 25 | subcss2 17474 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑤𝐽𝑥) ⊆ (𝑤(Hom ‘𝐶)𝑥)) |
30 | | simpr31 1261 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤𝐽𝑥)) |
31 | 29, 30 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥)) |
32 | 2, 20, 18, 21, 24, 10, 26, 31 | catlid 17309 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (( 1 ‘𝑥)(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
33 | | simpr2l 1230 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ 𝑆) |
34 | 22, 33 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐶)) |
35 | 27, 28, 20, 25, 33 | subcss2 17474 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
36 | | simpr32 1262 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥𝐽𝑦)) |
37 | 35, 36 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
38 | 2, 20, 18, 21, 26, 10, 34, 37 | catrid 17310 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( 1 ‘𝑥)) = 𝑔) |
39 | 27, 28, 23, 10, 25, 33, 30, 36 | subccocl 17476 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤𝐽𝑦)) |
40 | | simpr2r 1231 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ 𝑆) |
41 | 22, 40 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐶)) |
42 | 27, 28, 20, 33, 40 | subcss2 17474 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧)) |
43 | | simpr33 1263 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦𝐽𝑧)) |
44 | 42, 43 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) |
45 | 2, 20, 10, 21, 24, 26, 34, 31, 37, 41, 44 | catass 17312 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
46 | 8, 9, 11, 13, 14, 19, 32, 38, 39, 45 | iscatd2 17307 |
1
⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥 ∈ 𝑆 ↦ ( 1 ‘𝑥)))) |