Step | Hyp | Ref
| Expression |
1 | | subccat.1 |
. . 3
⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
2 | | eqid 2825 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | subccat.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
4 | | subcrcl 16835 |
. . . 4
⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
6 | | subccatid.1 |
. . 3
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
7 | 3, 6, 2 | subcss1 16861 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
8 | 1, 2, 5, 6, 7 | rescbas 16848 |
. 2
⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
9 | 1, 2, 5, 6, 7 | reschom 16849 |
. 2
⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
10 | | eqid 2825 |
. . 3
⊢
(comp‘𝐶) =
(comp‘𝐶) |
11 | 1, 2, 5, 6, 7, 10 | rescco 16851 |
. 2
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
12 | | ovex 6942 |
. . . 4
⊢ (𝐶 ↾cat 𝐽) ∈ V |
13 | 1, 12 | eqeltri 2902 |
. . 3
⊢ 𝐷 ∈ V |
14 | 13 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 ∈ V) |
15 | | biid 253 |
. 2
⊢ (((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧))) ↔ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) |
16 | 3 | adantr 474 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (Subcat‘𝐶)) |
17 | 6 | adantr 474 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 Fn (𝑆 × 𝑆)) |
18 | | simpr 479 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
19 | | subccatid.2 |
. . 3
⊢ 1 =
(Id‘𝐶) |
20 | 16, 17, 18, 19 | subcidcl 16863 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
21 | | eqid 2825 |
. . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
22 | 5 | adantr 474 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat) |
23 | 7 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶)) |
24 | | simpr1l 1309 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ 𝑆) |
25 | 23, 24 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑤 ∈ (Base‘𝐶)) |
26 | | simpr1r 1311 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ 𝑆) |
27 | 23, 26 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐶)) |
28 | 3 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 ∈ (Subcat‘𝐶)) |
29 | 6 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆)) |
30 | 28, 29, 21, 24, 26 | subcss2 16862 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑤𝐽𝑥) ⊆ (𝑤(Hom ‘𝐶)𝑥)) |
31 | | simpr31 1363 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤𝐽𝑥)) |
32 | 30, 31 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥)) |
33 | 2, 21, 19, 22, 25, 10, 27, 32 | catlid 16703 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (( 1 ‘𝑥)(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
34 | | simpr2l 1313 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ 𝑆) |
35 | 23, 34 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐶)) |
36 | 28, 29, 21, 26, 34 | subcss2 16862 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
37 | | simpr32 1365 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥𝐽𝑦)) |
38 | 36, 37 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
39 | 2, 21, 19, 22, 27, 10, 35, 38 | catrid 16704 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)( 1 ‘𝑥)) = 𝑔) |
40 | 28, 29, 24, 10, 26, 34, 31, 37 | subccocl 16864 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤𝐽𝑦)) |
41 | | simpr2r 1315 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ 𝑆) |
42 | 23, 41 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐶)) |
43 | 28, 29, 21, 34, 41 | subcss2 16862 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧)) |
44 | | simpr33 1367 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦𝐽𝑧)) |
45 | 43, 44 | sseldd 3828 |
. . 3
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) |
46 | 2, 21, 10, 22, 25, 27, 35, 32, 38, 42, 45 | catass 16706 |
. 2
⊢ ((𝜑 ∧ ((𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑤𝐽𝑥) ∧ 𝑔 ∈ (𝑥𝐽𝑦) ∧ ℎ ∈ (𝑦𝐽𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
47 | 8, 9, 11, 14, 15, 20, 33, 39, 40, 46 | iscatd2 16701 |
1
⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥 ∈ 𝑆 ↦ ( 1 ‘𝑥)))) |