Step | Hyp | Ref
| Expression |
1 | | subccat.1 |
. . 3
β’ π· = (πΆ βΎcat π½) |
2 | | eqid 2732 |
. . 3
β’
(BaseβπΆ) =
(BaseβπΆ) |
3 | | subccat.j |
. . . 4
β’ (π β π½ β (SubcatβπΆ)) |
4 | | subcrcl 17759 |
. . . 4
β’ (π½ β (SubcatβπΆ) β πΆ β Cat) |
5 | 3, 4 | syl 17 |
. . 3
β’ (π β πΆ β Cat) |
6 | | subccatid.1 |
. . 3
β’ (π β π½ Fn (π Γ π)) |
7 | 3, 6, 2 | subcss1 17788 |
. . 3
β’ (π β π β (BaseβπΆ)) |
8 | 1, 2, 5, 6, 7 | rescbas 17772 |
. 2
β’ (π β π = (Baseβπ·)) |
9 | 1, 2, 5, 6, 7 | reschom 17774 |
. 2
β’ (π β π½ = (Hom βπ·)) |
10 | | eqid 2732 |
. . 3
β’
(compβπΆ) =
(compβπΆ) |
11 | 1, 2, 5, 6, 7, 10 | rescco 17776 |
. 2
β’ (π β (compβπΆ) = (compβπ·)) |
12 | 1 | ovexi 7439 |
. . 3
β’ π· β V |
13 | 12 | a1i 11 |
. 2
β’ (π β π· β V) |
14 | | biid 260 |
. 2
β’ (((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§))) β ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) |
15 | 3 | adantr 481 |
. . 3
β’ ((π β§ π₯ β π) β π½ β (SubcatβπΆ)) |
16 | 6 | adantr 481 |
. . 3
β’ ((π β§ π₯ β π) β π½ Fn (π Γ π)) |
17 | | simpr 485 |
. . 3
β’ ((π β§ π₯ β π) β π₯ β π) |
18 | | subccatid.2 |
. . 3
β’ 1 =
(IdβπΆ) |
19 | 15, 16, 17, 18 | subcidcl 17790 |
. 2
β’ ((π β§ π₯ β π) β ( 1 βπ₯) β (π₯π½π₯)) |
20 | | eqid 2732 |
. . 3
β’ (Hom
βπΆ) = (Hom
βπΆ) |
21 | 5 | adantr 481 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β πΆ β Cat) |
22 | 7 | adantr 481 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π β (BaseβπΆ)) |
23 | | simpr1l 1230 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π€ β π) |
24 | 22, 23 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π€ β (BaseβπΆ)) |
25 | | simpr1r 1231 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π₯ β π) |
26 | 22, 25 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π₯ β (BaseβπΆ)) |
27 | 3 | adantr 481 |
. . . . 5
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π½ β (SubcatβπΆ)) |
28 | 6 | adantr 481 |
. . . . 5
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π½ Fn (π Γ π)) |
29 | 27, 28, 20, 23, 25 | subcss2 17789 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β (π€π½π₯) β (π€(Hom βπΆ)π₯)) |
30 | | simpr31 1263 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π β (π€π½π₯)) |
31 | 29, 30 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π β (π€(Hom βπΆ)π₯)) |
32 | 2, 20, 18, 21, 24, 10, 26, 31 | catlid 17623 |
. 2
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β (( 1 βπ₯)(β¨π€, π₯β©(compβπΆ)π₯)π) = π) |
33 | | simpr2l 1232 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π¦ β π) |
34 | 22, 33 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π¦ β (BaseβπΆ)) |
35 | 27, 28, 20, 25, 33 | subcss2 17789 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β (π₯π½π¦) β (π₯(Hom βπΆ)π¦)) |
36 | | simpr32 1264 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π β (π₯π½π¦)) |
37 | 35, 36 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π β (π₯(Hom βπΆ)π¦)) |
38 | 2, 20, 18, 21, 26, 10, 34, 37 | catrid 17624 |
. 2
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β (π(β¨π₯, π₯β©(compβπΆ)π¦)( 1 βπ₯)) = π) |
39 | 27, 28, 23, 10, 25, 33, 30, 36 | subccocl 17791 |
. 2
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β (π(β¨π€, π₯β©(compβπΆ)π¦)π) β (π€π½π¦)) |
40 | | simpr2r 1233 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π§ β π) |
41 | 22, 40 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β π§ β (BaseβπΆ)) |
42 | 27, 28, 20, 33, 40 | subcss2 17789 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β (π¦π½π§) β (π¦(Hom βπΆ)π§)) |
43 | | simpr33 1265 |
. . . 4
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β β β (π¦π½π§)) |
44 | 42, 43 | sseldd 3982 |
. . 3
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β β β (π¦(Hom βπΆ)π§)) |
45 | 2, 20, 10, 21, 24, 26, 34, 31, 37, 41, 44 | catass 17626 |
. 2
β’ ((π β§ ((π€ β π β§ π₯ β π) β§ (π¦ β π β§ π§ β π) β§ (π β (π€π½π₯) β§ π β (π₯π½π¦) β§ β β (π¦π½π§)))) β ((β(β¨π₯, π¦β©(compβπΆ)π§)π)(β¨π€, π₯β©(compβπΆ)π§)π) = (β(β¨π€, π¦β©(compβπΆ)π§)(π(β¨π€, π₯β©(compβπΆ)π¦)π))) |
46 | 8, 9, 11, 13, 14, 19, 32, 38, 39, 45 | iscatd2 17621 |
1
β’ (π β (π· β Cat β§ (Idβπ·) = (π₯ β π β¦ ( 1 βπ₯)))) |