Step | Hyp | Ref
| Expression |
1 | | simprrl 778 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → 𝑦 Btwn 〈𝐶, 𝐷〉) |
2 | | simprlr 777 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) |
3 | | simpl11 1247 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
4 | | simpl21 1250 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
5 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁)) |
6 | | simpl22 1251 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
7 | | simpl32 1254 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐺 ∈ (𝔼‘𝑁)) |
8 | | simpl33 1255 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐻 ∈ (𝔼‘𝑁)) |
9 | | cgrxfr 34357 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉))) |
10 | 3, 4, 5, 6, 7, 8, 9 | syl132anc 1387 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉))) |
11 | 10 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉))) |
12 | 1, 2, 11 | mp2and 696 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉)) |
13 | | anass 469 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
𝑧 ∈
(𝔼‘𝑁)) ↔
(((𝑁 ∈ ℕ ∧
𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁)))) |
14 | | simpl11 1247 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
15 | | simpl21 1250 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
16 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁)) |
17 | | simpl22 1251 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
18 | | simpl32 1254 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁)) |
19 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑧 ∈ (𝔼‘𝑁)) |
20 | | simpl33 1255 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁)) |
21 | | brcgr3 34348 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) |
22 | 14, 15, 16, 17, 18, 19, 20, 21 | syl133anc 1392 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) |
24 | | df-3an 1088 |
. . . . . . . . . . . . . . 15
⊢
(((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉)) ↔ (((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) |
25 | | simpl23 1252 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁)) |
26 | | simpl31 1253 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |
27 | | simpl12 1248 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
28 | | simpl13 1249 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
29 | | simpr1l 1229 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) |
30 | | simpr2r 1232 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) |
31 | 14, 27, 28, 25, 26, 15, 16, 29, 30 | cgrtr4and 34288 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) → 〈𝐸, 𝐹〉Cgr〈𝐶, 𝑦〉) |
32 | | simpr31 1262 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) → 〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉) |
33 | 14, 25, 26, 15, 16, 18, 19, 31, 32 | cgrtrand 34295 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) → 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉) |
34 | 24, 33 | sylan2br 595 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
(((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) ∧ (〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉))) → 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉) |
35 | 34 | expr 457 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → ((〈𝐶, 𝑦〉Cgr〈𝐺, 𝑧〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝑧, 𝐻〉) → 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉)) |
36 | 23, 35 | sylbid 239 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉 → 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉)) |
37 | 36 | anim2d 612 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(𝑦 ∈
(𝔼‘𝑁) ∧
𝑧 ∈
(𝔼‘𝑁))) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → ((𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉) → (𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
38 | 13, 37 | sylanb 581 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
𝑧 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → ((𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉) → (𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
39 | 38 | an32s 649 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉) → (𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
40 | 39 | reximdva 3203 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐺, 〈𝑧, 𝐻〉〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
41 | 12, 40 | mpd 15 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉)) |
42 | 41 | expr 457 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
43 | 42 | an32s 649 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁) ∧
𝐸 ∈
(𝔼‘𝑁)) ∧
(𝐹 ∈
(𝔼‘𝑁) ∧
𝐺 ∈
(𝔼‘𝑁) ∧
𝐻 ∈
(𝔼‘𝑁))) ∧
(〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
44 | 43 | rexlimdva 3213 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
45 | | simp11 1202 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
46 | | simp12 1203 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
47 | | simp13 1204 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
48 | | simp21 1205 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
49 | | simp22 1206 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
50 | | brsegle 34410 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
51 | 45, 46, 47, 48, 49, 50 | syl122anc 1378 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
52 | 51 | adantr 481 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
53 | | simp23 1207 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁)) |
54 | | simp31 1208 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |
55 | | simp32 1209 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁)) |
56 | | simp33 1210 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁)) |
57 | | brsegle 34410 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉 ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
58 | 45, 53, 54, 55, 56, 57 | syl122anc 1378 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉 ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
59 | 58 | adantr 481 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) → (〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉 ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn 〈𝐺, 𝐻〉 ∧ 〈𝐸, 𝐹〉Cgr〈𝐺, 𝑧〉))) |
60 | 44, 52, 59 | 3imtr4d 294 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 → 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉)) |
61 | 60 | exp32 421 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 → (〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 → 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉)))) |
62 | 61 | 3impd 1347 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉) → 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉)) |