Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seglecgr12im Structured version   Visualization version   GIF version

Theorem seglecgr12im 33125
Description: Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
seglecgr12im (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩) → ⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩))

Proof of Theorem seglecgr12im
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprrl 769 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
2 simprlr 768 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
3 simpl11 1229 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl21 1232 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 simpr 477 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
6 simpl22 1233 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
7 simpl32 1236 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐺 ∈ (𝔼‘𝑁))
8 simpl33 1237 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐻 ∈ (𝔼‘𝑁))
9 cgrxfr 33070 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩)))
103, 4, 5, 6, 7, 8, 9syl132anc 1369 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩)))
1110adantr 473 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩)))
121, 2, 11mp2and 687 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩))
13 anass 461 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑧 ∈ (𝔼‘𝑁)) ↔ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))))
14 simpl11 1229 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
15 simpl21 1232 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
16 simprl 759 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
17 simpl22 1233 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
18 simpl32 1236 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
19 simprr 761 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑧 ∈ (𝔼‘𝑁))
20 simpl33 1237 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁))
21 brcgr3 33061 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩)))
2214, 15, 16, 17, 18, 19, 20, 21syl133anc 1374 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩)))
2322adantr 473 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩)))
24 df-3an 1071 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩)) ↔ (((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩)))
25 simpl23 1234 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
26 simpl31 1235 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
27 simpl12 1230 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
28 simpl13 1231 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
29 simpr1l 1211 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩)
30 simpr2r 1214 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
3114, 27, 28, 25, 26, 15, 16, 29, 30cgrtr4and 33001 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩))) → ⟨𝐸, 𝐹⟩Cgr⟨𝐶, 𝑦⟩)
32 simpr31 1244 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩))) → ⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩)
3314, 25, 26, 15, 16, 18, 19, 31, 32cgrtrand 33008 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩))) → ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)
3424, 33sylan2br 586 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ (((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩))) → ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)
3534expr 449 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ((⟨𝐶, 𝑦⟩Cgr⟨𝐺, 𝑧⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑧, 𝐻⟩) → ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩))
3623, 35sylbid 232 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩ → ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩))
3736anim2d 603 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ((𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩) → (𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
3813, 37sylanb 573 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ((𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩) → (𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
3938an32s 640 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩) → (𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
4039reximdva 3214 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐺, ⟨𝑧, 𝐻⟩⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
4112, 40mpd 15 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩))
4241expr 449 . . . . . 6 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
4342an32s 640 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
4443rexlimdva 3224 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
45 simp11 1184 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
46 simp12 1185 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
47 simp13 1186 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
48 simp21 1187 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
49 simp22 1188 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
50 brsegle 33123 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
5145, 46, 47, 48, 49, 50syl122anc 1360 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
5251adantr 473 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
53 simp23 1189 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
54 simp31 1190 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
55 simp32 1191 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
56 simp33 1192 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁))
57 brsegle 33123 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
5845, 53, 54, 55, 56, 57syl122anc 1360 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
5958adantr 473 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐺, 𝐻⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐺, 𝑧⟩)))
6044, 52, 593imtr4d 286 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ → ⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩))
6160exp32 413 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ → (⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ → ⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩))))
62613impd 1329 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩) → ⟨𝐸, 𝐹⟩ Seg𝐺, 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069  wcel 2051  wrex 3084  cop 4442   class class class wbr 4926  cfv 6186  cn 11438  𝔼cee 26393   Btwn cbtwn 26394  Cgrccgr 26395  Cgr3ccgr3 33051   Seg csegle 33121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-sup 8700  df-oi 8768  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-seq 13184  df-exp 13244  df-hash 13505  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-sum 14903  df-ee 26396  df-btwn 26397  df-cgr 26398  df-ofs 32998  df-cgr3 33056  df-segle 33122
This theorem is referenced by:  seglecgr12  33126
  Copyright terms: Public domain W3C validator