Step | Hyp | Ref
| Expression |
1 | | catccatid.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | 1 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐵 = (Base‘𝐶)) |
3 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
4 | | eqidd 2739 |
. 2
⊢ (𝑈 ∈ 𝑉 → (comp‘𝐶) = (comp‘𝐶)) |
5 | | catccatid.c |
. . . 4
⊢ 𝐶 = (CatCat‘𝑈) |
6 | 5 | fvexi 6770 |
. . 3
⊢ 𝐶 ∈ V |
7 | 6 | a1i 11 |
. 2
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ V) |
8 | | biid 260 |
. 2
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) |
9 | | id 22 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉) |
10 | 5, 1, 9 | catcbas 17732 |
. . . . . 6
⊢ (𝑈 ∈ 𝑉 → 𝐵 = (𝑈 ∩ Cat)) |
11 | | inss2 4160 |
. . . . . 6
⊢ (𝑈 ∩ Cat) ⊆
Cat |
12 | 10, 11 | eqsstrdi 3971 |
. . . . 5
⊢ (𝑈 ∈ 𝑉 → 𝐵 ⊆ Cat) |
13 | 12 | sselda 3917 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Cat) |
14 | | eqid 2738 |
. . . . 5
⊢
(idfunc‘𝑥) = (idfunc‘𝑥) |
15 | 14 | idfucl 17512 |
. . . 4
⊢ (𝑥 ∈ Cat →
(idfunc‘𝑥) ∈ (𝑥 Func 𝑥)) |
16 | 13, 15 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) →
(idfunc‘𝑥) ∈ (𝑥 Func 𝑥)) |
17 | | simpl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
18 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
19 | | simpr 484 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
20 | 5, 1, 17, 18, 19, 19 | catchom 17734 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 Func 𝑥)) |
21 | 16, 20 | eleqtrrd 2842 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) →
(idfunc‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
22 | | simpl 482 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈 ∈ 𝑉) |
23 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
24 | | simpr1l 1228 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤 ∈ 𝐵) |
25 | | simpr1r 1229 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ 𝐵) |
26 | | simpr31 1261 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥)) |
27 | 5, 1, 22, 18, 24, 25 | catchom 17734 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 Func 𝑥)) |
28 | 26, 27 | eleqtrd 2841 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 Func 𝑥)) |
29 | 25, 16 | syldan 590 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) →
(idfunc‘𝑥) ∈ (𝑥 Func 𝑥)) |
30 | 5, 1, 22, 23, 24, 25, 25, 28, 29 | catcco 17736 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) →
((idfunc‘𝑥)(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = ((idfunc‘𝑥) ∘func
𝑓)) |
31 | 28, 14 | cofulid 17521 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) →
((idfunc‘𝑥) ∘func 𝑓) = 𝑓) |
32 | 30, 31 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) →
((idfunc‘𝑥)(〈𝑤, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
33 | | simpr2l 1230 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ 𝐵) |
34 | | simpr32 1262 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
35 | 5, 1, 22, 18, 25, 33 | catchom 17734 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 Func 𝑦)) |
36 | 34, 35 | eleqtrd 2841 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 Func 𝑦)) |
37 | 5, 1, 22, 23, 25, 25, 33, 29, 36 | catcco 17736 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)(idfunc‘𝑥)) = (𝑔 ∘func
(idfunc‘𝑥))) |
38 | 36, 14 | cofurid 17522 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘func
(idfunc‘𝑥)) = 𝑔) |
39 | 37, 38 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)(idfunc‘𝑥)) = 𝑔) |
40 | 28, 36 | cofucl 17519 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘func 𝑓) ∈ (𝑤 Func 𝑦)) |
41 | 5, 1, 22, 23, 24, 25, 33, 28, 36 | catcco 17736 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) = (𝑔 ∘func 𝑓)) |
42 | 5, 1, 22, 18, 24, 33 | catchom 17734 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 Func 𝑦)) |
43 | 40, 41, 42 | 3eltr4d 2854 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦)) |
44 | | simpr33 1263 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)) |
45 | | simpr2r 1231 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ 𝐵) |
46 | 5, 1, 22, 18, 33, 45 | catchom 17734 |
. . . . . 6
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 Func 𝑧)) |
47 | 44, 46 | eleqtrd 2841 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ℎ ∈ (𝑦 Func 𝑧)) |
48 | 28, 36, 47 | cofuass 17520 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘func 𝑔) ∘func
𝑓) = (ℎ ∘func (𝑔 ∘func
𝑓))) |
49 | 36, 47 | cofucl 17519 |
. . . . 5
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ ∘func 𝑔) ∈ (𝑥 Func 𝑧)) |
50 | 5, 1, 22, 23, 24, 25, 45, 28, 49 | catcco 17736 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘func 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘func 𝑔) ∘func
𝑓)) |
51 | 5, 1, 22, 23, 24, 33, 45, 40, 47 | catcco 17736 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘func 𝑓)) = (ℎ ∘func (𝑔 ∘func
𝑓))) |
52 | 48, 50, 51 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ ∘func 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘func 𝑓))) |
53 | 5, 1, 22, 23, 25, 33, 45, 36, 47 | catcco 17736 |
. . . 4
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) = (ℎ ∘func 𝑔)) |
54 | 53 | oveq1d 7270 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = ((ℎ ∘func 𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓)) |
55 | 41 | oveq2d 7271 |
. . 3
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓)) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔 ∘func 𝑓))) |
56 | 52, 54, 55 | 3eqtr4d 2788 |
. 2
⊢ ((𝑈 ∈ 𝑉 ∧ ((𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)(〈𝑤, 𝑥〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑤, 𝑦〉(comp‘𝐶)𝑧)(𝑔(〈𝑤, 𝑥〉(comp‘𝐶)𝑦)𝑓))) |
57 | 2, 3, 4, 7, 8, 21,
32, 39, 43, 56 | iscatd2 17307 |
1
⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦
(idfunc‘𝑥)))) |