Step | Hyp | Ref
| Expression |
1 | | catccatid.b |
. . 3
β’ π΅ = (BaseβπΆ) |
2 | 1 | a1i 11 |
. 2
β’ (π β π β π΅ = (BaseβπΆ)) |
3 | | eqidd 2734 |
. 2
β’ (π β π β (Hom βπΆ) = (Hom βπΆ)) |
4 | | eqidd 2734 |
. 2
β’ (π β π β (compβπΆ) = (compβπΆ)) |
5 | | catccatid.c |
. . . 4
β’ πΆ = (CatCatβπ) |
6 | 5 | fvexi 6857 |
. . 3
β’ πΆ β V |
7 | 6 | a1i 11 |
. 2
β’ (π β π β πΆ β V) |
8 | | biid 261 |
. 2
β’ (((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§))) β ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) |
9 | | id 22 |
. . . . . . 7
β’ (π β π β π β π) |
10 | 5, 1, 9 | catcbas 17992 |
. . . . . 6
β’ (π β π β π΅ = (π β© Cat)) |
11 | | inss2 4190 |
. . . . . 6
β’ (π β© Cat) β
Cat |
12 | 10, 11 | eqsstrdi 3999 |
. . . . 5
β’ (π β π β π΅ β Cat) |
13 | 12 | sselda 3945 |
. . . 4
β’ ((π β π β§ π₯ β π΅) β π₯ β Cat) |
14 | | eqid 2733 |
. . . . 5
β’
(idfuncβπ₯) = (idfuncβπ₯) |
15 | 14 | idfucl 17772 |
. . . 4
β’ (π₯ β Cat β
(idfuncβπ₯) β (π₯ Func π₯)) |
16 | 13, 15 | syl 17 |
. . 3
β’ ((π β π β§ π₯ β π΅) β
(idfuncβπ₯) β (π₯ Func π₯)) |
17 | | simpl 484 |
. . . 4
β’ ((π β π β§ π₯ β π΅) β π β π) |
18 | | eqid 2733 |
. . . 4
β’ (Hom
βπΆ) = (Hom
βπΆ) |
19 | | simpr 486 |
. . . 4
β’ ((π β π β§ π₯ β π΅) β π₯ β π΅) |
20 | 5, 1, 17, 18, 19, 19 | catchom 17994 |
. . 3
β’ ((π β π β§ π₯ β π΅) β (π₯(Hom βπΆ)π₯) = (π₯ Func π₯)) |
21 | 16, 20 | eleqtrrd 2837 |
. 2
β’ ((π β π β§ π₯ β π΅) β
(idfuncβπ₯) β (π₯(Hom βπΆ)π₯)) |
22 | | simpl 484 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π β π) |
23 | | eqid 2733 |
. . . 4
β’
(compβπΆ) =
(compβπΆ) |
24 | | simpr1l 1231 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π€ β π΅) |
25 | | simpr1r 1232 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π₯ β π΅) |
26 | | simpr31 1264 |
. . . . 5
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π β (π€(Hom βπΆ)π₯)) |
27 | 5, 1, 22, 18, 24, 25 | catchom 17994 |
. . . . 5
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π€(Hom βπΆ)π₯) = (π€ Func π₯)) |
28 | 26, 27 | eleqtrd 2836 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π β (π€ Func π₯)) |
29 | 25, 16 | syldan 592 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β
(idfuncβπ₯) β (π₯ Func π₯)) |
30 | 5, 1, 22, 23, 24, 25, 25, 28, 29 | catcco 17996 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β
((idfuncβπ₯)(β¨π€, π₯β©(compβπΆ)π₯)π) = ((idfuncβπ₯) βfunc
π)) |
31 | 28, 14 | cofulid 17781 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β
((idfuncβπ₯) βfunc π) = π) |
32 | 30, 31 | eqtrd 2773 |
. 2
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β
((idfuncβπ₯)(β¨π€, π₯β©(compβπΆ)π₯)π) = π) |
33 | | simpr2l 1233 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π¦ β π΅) |
34 | | simpr32 1265 |
. . . . 5
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π β (π₯(Hom βπΆ)π¦)) |
35 | 5, 1, 22, 18, 25, 33 | catchom 17994 |
. . . . 5
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π₯(Hom βπΆ)π¦) = (π₯ Func π¦)) |
36 | 34, 35 | eleqtrd 2836 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π β (π₯ Func π¦)) |
37 | 5, 1, 22, 23, 25, 25, 33, 29, 36 | catcco 17996 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π(β¨π₯, π₯β©(compβπΆ)π¦)(idfuncβπ₯)) = (π βfunc
(idfuncβπ₯))) |
38 | 36, 14 | cofurid 17782 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π βfunc
(idfuncβπ₯)) = π) |
39 | 37, 38 | eqtrd 2773 |
. 2
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π(β¨π₯, π₯β©(compβπΆ)π¦)(idfuncβπ₯)) = π) |
40 | 28, 36 | cofucl 17779 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π βfunc π) β (π€ Func π¦)) |
41 | 5, 1, 22, 23, 24, 25, 33, 28, 36 | catcco 17996 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π(β¨π€, π₯β©(compβπΆ)π¦)π) = (π βfunc π)) |
42 | 5, 1, 22, 18, 24, 33 | catchom 17994 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π€(Hom βπΆ)π¦) = (π€ Func π¦)) |
43 | 40, 41, 42 | 3eltr4d 2849 |
. 2
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π(β¨π€, π₯β©(compβπΆ)π¦)π) β (π€(Hom βπΆ)π¦)) |
44 | | simpr33 1266 |
. . . . . 6
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β β β (π¦(Hom βπΆ)π§)) |
45 | | simpr2r 1234 |
. . . . . . 7
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β π§ β π΅) |
46 | 5, 1, 22, 18, 33, 45 | catchom 17994 |
. . . . . 6
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (π¦(Hom βπΆ)π§) = (π¦ Func π§)) |
47 | 44, 46 | eleqtrd 2836 |
. . . . 5
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β β β (π¦ Func π§)) |
48 | 28, 36, 47 | cofuass 17780 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β ((β βfunc π) βfunc
π) = (β βfunc (π βfunc
π))) |
49 | 36, 47 | cofucl 17779 |
. . . . 5
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (β βfunc π) β (π₯ Func π§)) |
50 | 5, 1, 22, 23, 24, 25, 45, 28, 49 | catcco 17996 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β ((β βfunc π)(β¨π€, π₯β©(compβπΆ)π§)π) = ((β βfunc π) βfunc
π)) |
51 | 5, 1, 22, 23, 24, 33, 45, 40, 47 | catcco 17996 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (β(β¨π€, π¦β©(compβπΆ)π§)(π βfunc π)) = (β βfunc (π βfunc
π))) |
52 | 48, 50, 51 | 3eqtr4d 2783 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β ((β βfunc π)(β¨π€, π₯β©(compβπΆ)π§)π) = (β(β¨π€, π¦β©(compβπΆ)π§)(π βfunc π))) |
53 | 5, 1, 22, 23, 25, 33, 45, 36, 47 | catcco 17996 |
. . . 4
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (β(β¨π₯, π¦β©(compβπΆ)π§)π) = (β βfunc π)) |
54 | 53 | oveq1d 7373 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β ((β(β¨π₯, π¦β©(compβπΆ)π§)π)(β¨π€, π₯β©(compβπΆ)π§)π) = ((β βfunc π)(β¨π€, π₯β©(compβπΆ)π§)π)) |
55 | 41 | oveq2d 7374 |
. . 3
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β (β(β¨π€, π¦β©(compβπΆ)π§)(π(β¨π€, π₯β©(compβπΆ)π¦)π)) = (β(β¨π€, π¦β©(compβπΆ)π§)(π βfunc π))) |
56 | 52, 54, 55 | 3eqtr4d 2783 |
. 2
β’ ((π β π β§ ((π€ β π΅ β§ π₯ β π΅) β§ (π¦ β π΅ β§ π§ β π΅) β§ (π β (π€(Hom βπΆ)π₯) β§ π β (π₯(Hom βπΆ)π¦) β§ β β (π¦(Hom βπΆ)π§)))) β ((β(β¨π₯, π¦β©(compβπΆ)π§)π)(β¨π€, π₯β©(compβπΆ)π§)π) = (β(β¨π€, π¦β©(compβπΆ)π§)(π(β¨π€, π₯β©(compβπΆ)π¦)π))) |
57 | 2, 3, 4, 7, 8, 21,
32, 39, 43, 56 | iscatd2 17566 |
1
β’ (π β π β (πΆ β Cat β§ (IdβπΆ) = (π₯ β π΅ β¦
(idfuncβπ₯)))) |