MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catccatid Structured version   Visualization version   GIF version

Theorem catccatid 17354
Description: Lemma for catccat 17356. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catccatid.c 𝐶 = (CatCat‘𝑈)
catccatid.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
catccatid (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ (idfunc𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem catccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catccatid.b . . 3 𝐵 = (Base‘𝐶)
21a1i 11 . 2 (𝑈𝑉𝐵 = (Base‘𝐶))
3 eqidd 2799 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
4 eqidd 2799 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
5 catccatid.c . . . 4 𝐶 = (CatCat‘𝑈)
65fvexi 6659 . . 3 𝐶 ∈ V
76a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
8 biid 264 . 2 (((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
9 id 22 . . . . . . 7 (𝑈𝑉𝑈𝑉)
105, 1, 9catcbas 17349 . . . . . 6 (𝑈𝑉𝐵 = (𝑈 ∩ Cat))
11 inss2 4156 . . . . . 6 (𝑈 ∩ Cat) ⊆ Cat
1210, 11eqsstrdi 3969 . . . . 5 (𝑈𝑉𝐵 ⊆ Cat)
1312sselda 3915 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥 ∈ Cat)
14 eqid 2798 . . . . 5 (idfunc𝑥) = (idfunc𝑥)
1514idfucl 17143 . . . 4 (𝑥 ∈ Cat → (idfunc𝑥) ∈ (𝑥 Func 𝑥))
1613, 15syl 17 . . 3 ((𝑈𝑉𝑥𝐵) → (idfunc𝑥) ∈ (𝑥 Func 𝑥))
17 simpl 486 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑈𝑉)
18 eqid 2798 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
19 simpr 488 . . . 4 ((𝑈𝑉𝑥𝐵) → 𝑥𝐵)
205, 1, 17, 18, 19, 19catchom 17351 . . 3 ((𝑈𝑉𝑥𝐵) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥 Func 𝑥))
2116, 20eleqtrrd 2893 . 2 ((𝑈𝑉𝑥𝐵) → (idfunc𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
22 simpl 486 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
23 eqid 2798 . . . 4 (comp‘𝐶) = (comp‘𝐶)
24 simpr1l 1227 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝐵)
25 simpr1r 1228 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝐵)
26 simpr31 1260 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
275, 1, 22, 18, 24, 25catchom 17351 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑥) = (𝑤 Func 𝑥))
2826, 27eleqtrd 2892 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤 Func 𝑥))
2925, 16syldan 594 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (idfunc𝑥) ∈ (𝑥 Func 𝑥))
305, 1, 22, 23, 24, 25, 25, 28, 29catcco 17353 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((idfunc𝑥)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = ((idfunc𝑥) ∘func 𝑓))
3128, 14cofulid 17152 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((idfunc𝑥) ∘func 𝑓) = 𝑓)
3230, 31eqtrd 2833 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((idfunc𝑥)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
33 simpr2l 1229 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝐵)
34 simpr32 1261 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
355, 1, 22, 18, 25, 33catchom 17351 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 Func 𝑦))
3634, 35eleqtrd 2892 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥 Func 𝑦))
375, 1, 22, 23, 25, 25, 33, 29, 36catcco 17353 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)(idfunc𝑥)) = (𝑔func (idfunc𝑥)))
3836, 14cofurid 17153 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔func (idfunc𝑥)) = 𝑔)
3937, 38eqtrd 2833 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)(idfunc𝑥)) = 𝑔)
4028, 36cofucl 17150 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔func 𝑓) ∈ (𝑤 Func 𝑦))
415, 1, 22, 23, 24, 25, 33, 28, 36catcco 17353 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔func 𝑓))
425, 1, 22, 18, 24, 33catchom 17351 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑤(Hom ‘𝐶)𝑦) = (𝑤 Func 𝑦))
4340, 41, 423eltr4d 2905 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
44 simpr33 1262 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
45 simpr2r 1230 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝐵)
465, 1, 22, 18, 33, 45catchom 17351 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦 Func 𝑧))
4744, 46eleqtrd 2892 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦 Func 𝑧))
4828, 36, 47cofuass 17151 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((func 𝑔) ∘func 𝑓) = (func (𝑔func 𝑓)))
4936, 47cofucl 17150 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (func 𝑔) ∈ (𝑥 Func 𝑧))
505, 1, 22, 23, 24, 25, 45, 28, 49catcco 17353 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((func 𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((func 𝑔) ∘func 𝑓))
515, 1, 22, 23, 24, 33, 45, 40, 47catcco 17353 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔func 𝑓)) = (func (𝑔func 𝑓)))
5248, 50, 513eqtr4d 2843 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((func 𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔func 𝑓)))
535, 1, 22, 23, 25, 33, 45, 36, 47catcco 17353 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (func 𝑔))
5453oveq1d 7150 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((func 𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
5541oveq2d 7151 . . 3 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔func 𝑓)))
5652, 54, 553eqtr4d 2843 . 2 ((𝑈𝑉 ∧ ((𝑤𝐵𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
572, 3, 4, 7, 8, 21, 32, 39, 43, 56iscatd2 16944 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ (idfunc𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928   Func cfunc 17116  idfunccidfu 17117  func ccofu 17118  CatCatccatc 17346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-func 17120  df-idfu 17121  df-cofu 17122  df-catc 17347
This theorem is referenced by:  catcid  17355  catccat  17356
  Copyright terms: Public domain W3C validator