Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtccatid Structured version   Visualization version   GIF version

Theorem mndtccatid 46374
Description: Lemma for mndtccat 46375 and mndtcid 46376. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtccat.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtccat.m (𝜑𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtccatid (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
Distinct variable groups:   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem mndtccatid
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 (𝜑 → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2739 . 2 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqidd 2739 . 2 (𝜑 → (comp‘𝐶) = (comp‘𝐶))
4 mndtccat.c . . 3 (𝜑𝐶 = (MndToCat‘𝑀))
5 fvexd 6789 . . 3 (𝜑 → (MndToCat‘𝑀) ∈ V)
64, 5eqeltrd 2839 . 2 (𝜑𝐶 ∈ V)
7 biid 260 . 2 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))))
8 mndtccat.m . . . . 5 (𝜑𝑀 ∈ Mnd)
9 eqid 2738 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
10 eqid 2738 . . . . . 6 (0g𝑀) = (0g𝑀)
119, 10mndidcl 18400 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
128, 11syl 17 . . . 4 (𝜑 → (0g𝑀) ∈ (Base‘𝑀))
1312adantr 481 . . 3 ((𝜑𝑦 ∈ (Base‘𝐶)) → (0g𝑀) ∈ (Base‘𝑀))
144adantr 481 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝐶 = (MndToCat‘𝑀))
158adantr 481 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑀 ∈ Mnd)
16 eqidd 2739 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐶))
17 simpr 485 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
18 eqidd 2739 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶))
1914, 15, 16, 17, 17, 18mndtchom 46371 . . 3 ((𝜑𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑦) = (Base‘𝑀))
2013, 19eleqtrrd 2842 . 2 ((𝜑𝑦 ∈ (Base‘𝐶)) → (0g𝑀) ∈ (𝑦(Hom ‘𝐶)𝑦))
214adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝐶 = (MndToCat‘𝑀))
228adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑀 ∈ Mnd)
23 eqidd 2739 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Base‘𝐶) = (Base‘𝐶))
24 simpr1l 1229 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
25 simpr1r 1230 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
26 eqidd 2739 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (comp‘𝐶) = (comp‘𝐶))
2721, 22, 23, 24, 25, 25, 26mndtcco 46372 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦) = (+g𝑀))
2827oveqd 7292 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦)𝑓) = ((0g𝑀)(+g𝑀)𝑓))
29 simpr31 1262 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
30 eqidd 2739 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Hom ‘𝐶) = (Hom ‘𝐶))
3121, 22, 23, 24, 25, 30mndtchom 46371 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑦) = (Base‘𝑀))
3229, 31eleqtrd 2841 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (Base‘𝑀))
33 eqid 2738 . . . . 5 (+g𝑀) = (+g𝑀)
349, 33, 10mndlid 18405 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)𝑓) = 𝑓)
3522, 32, 34syl2anc 584 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(+g𝑀)𝑓) = 𝑓)
3628, 35eqtrd 2778 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦)𝑓) = 𝑓)
37 simpr2l 1231 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
3821, 22, 23, 25, 25, 37, 26mndtcco 46372 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧) = (+g𝑀))
3938oveqd 7292 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧)(0g𝑀)) = (𝑔(+g𝑀)(0g𝑀)))
40 simpr32 1263 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
4121, 22, 23, 25, 37, 30mndtchom 46371 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑦(Hom ‘𝐶)𝑧) = (Base‘𝑀))
4240, 41eleqtrd 2841 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (Base‘𝑀))
439, 33, 10mndrid 18406 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀)) → (𝑔(+g𝑀)(0g𝑀)) = 𝑔)
4422, 42, 43syl2anc 584 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g𝑀)(0g𝑀)) = 𝑔)
4539, 44eqtrd 2778 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧)(0g𝑀)) = 𝑔)
469, 33mndcl 18393 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀)) → (𝑔(+g𝑀)𝑓) ∈ (Base‘𝑀))
4722, 42, 32, 46syl3anc 1370 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g𝑀)𝑓) ∈ (Base‘𝑀))
4821, 22, 23, 24, 25, 37, 26mndtcco 46372 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (+g𝑀))
4948oveqd 7292 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(+g𝑀)𝑓))
5021, 22, 23, 24, 37, 30mndtchom 46371 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑧) = (Base‘𝑀))
5147, 49, 503eltr4d 2854 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
52 simpr33 1264 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
53 simpr2r 1232 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
5421, 22, 23, 37, 53, 30mndtchom 46371 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑧(Hom ‘𝐶)𝑤) = (Base‘𝑀))
5552, 54eleqtrd 2841 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (Base‘𝑀))
569, 33mndass 18394 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑘 ∈ (Base‘𝑀) ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀))) → ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
5722, 55, 42, 32, 56syl13anc 1371 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
5821, 22, 23, 24, 25, 53, 26mndtcco 46372 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤) = (+g𝑀))
5921, 22, 23, 25, 37, 53, 26mndtcco 46372 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤) = (+g𝑀))
6059oveqd 7292 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) = (𝑘(+g𝑀)𝑔))
61 eqidd 2739 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 = 𝑓)
6258, 60, 61oveq123d 7296 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓))
6321, 22, 23, 24, 37, 53, 26mndtcco 46372 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤) = (+g𝑀))
64 eqidd 2739 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 = 𝑘)
6563, 64, 49oveq123d 7296 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
6657, 62, 653eqtr4d 2788 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
671, 2, 3, 6, 7, 20, 36, 45, 51, 66iscatd2 17390 1 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cmpt 5157  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Hom chom 16973  compcco 16974  0gc0g 17150  Catccat 17373  Idccid 17374  Mndcmnd 18385  MndToCatcmndtc 46364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-0g 17152  df-cat 17377  df-cid 17378  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mndtc 46365
This theorem is referenced by:  mndtccat  46375  mndtcid  46376
  Copyright terms: Public domain W3C validator