| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqidd 2737 | . 2
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | 
| 2 |  | eqidd 2737 | . 2
⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) | 
| 3 |  | eqidd 2737 | . 2
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐶)) | 
| 4 |  | mndtccat.c | . . 3
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | 
| 5 |  | fvexd 6920 | . . 3
⊢ (𝜑 → (MndToCat‘𝑀) ∈ V) | 
| 6 | 4, 5 | eqeltrd 2840 | . 2
⊢ (𝜑 → 𝐶 ∈ V) | 
| 7 |  | biid 261 | . 2
⊢ (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) | 
| 8 |  | mndtccat.m | . . . . 5
⊢ (𝜑 → 𝑀 ∈ Mnd) | 
| 9 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 10 |  | eqid 2736 | . . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 11 | 9, 10 | mndidcl 18763 | . . . . 5
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ (Base‘𝑀)) | 
| 12 | 8, 11 | syl 17 | . . . 4
⊢ (𝜑 → (0g‘𝑀) ∈ (Base‘𝑀)) | 
| 13 | 12 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (0g‘𝑀) ∈ (Base‘𝑀)) | 
| 14 | 4 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 = (MndToCat‘𝑀)) | 
| 15 | 8 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑀 ∈ Mnd) | 
| 16 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐶)) | 
| 17 |  | simpr 484 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) | 
| 18 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶)) | 
| 19 | 14, 15, 16, 17, 17, 18 | mndtchom 49236 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑦) = (Base‘𝑀)) | 
| 20 | 13, 19 | eleqtrrd 2843 | . 2
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (0g‘𝑀) ∈ (𝑦(Hom ‘𝐶)𝑦)) | 
| 21 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝐶 = (MndToCat‘𝑀)) | 
| 22 | 8 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑀 ∈ Mnd) | 
| 23 |  | eqidd 2737 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Base‘𝐶) = (Base‘𝐶)) | 
| 24 |  | simpr1l 1230 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑥 ∈ (Base‘𝐶)) | 
| 25 |  | simpr1r 1231 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑦 ∈ (Base‘𝐶)) | 
| 26 |  | eqidd 2737 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (comp‘𝐶) = (comp‘𝐶)) | 
| 27 | 21, 22, 23, 24, 25, 25, 26 | mndtcco 49237 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑦) = (+g‘𝑀)) | 
| 28 | 27 | oveqd 7449 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g‘𝑀)(〈𝑥, 𝑦〉(comp‘𝐶)𝑦)𝑓) = ((0g‘𝑀)(+g‘𝑀)𝑓)) | 
| 29 |  | simpr31 1263 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) | 
| 30 |  | eqidd 2737 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Hom ‘𝐶) = (Hom ‘𝐶)) | 
| 31 | 21, 22, 23, 24, 25, 30 | mndtchom 49236 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑦) = (Base‘𝑀)) | 
| 32 | 29, 31 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (Base‘𝑀)) | 
| 33 |  | eqid 2736 | . . . . 5
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 34 | 9, 33, 10 | mndlid 18768 | . . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑓 ∈ (Base‘𝑀)) →
((0g‘𝑀)(+g‘𝑀)𝑓) = 𝑓) | 
| 35 | 22, 32, 34 | syl2anc 584 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g‘𝑀)(+g‘𝑀)𝑓) = 𝑓) | 
| 36 | 28, 35 | eqtrd 2776 | . 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g‘𝑀)(〈𝑥, 𝑦〉(comp‘𝐶)𝑦)𝑓) = 𝑓) | 
| 37 |  | simpr2l 1232 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑧 ∈ (Base‘𝐶)) | 
| 38 | 21, 22, 23, 25, 25, 37, 26 | mndtcco 49237 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑦, 𝑦〉(comp‘𝐶)𝑧) = (+g‘𝑀)) | 
| 39 | 38 | oveqd 7449 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑦, 𝑦〉(comp‘𝐶)𝑧)(0g‘𝑀)) = (𝑔(+g‘𝑀)(0g‘𝑀))) | 
| 40 |  | simpr32 1264 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) | 
| 41 | 21, 22, 23, 25, 37, 30 | mndtchom 49236 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑦(Hom ‘𝐶)𝑧) = (Base‘𝑀)) | 
| 42 | 40, 41 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (Base‘𝑀)) | 
| 43 | 9, 33, 10 | mndrid 18769 | . . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀)) → (𝑔(+g‘𝑀)(0g‘𝑀)) = 𝑔) | 
| 44 | 22, 42, 43 | syl2anc 584 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g‘𝑀)(0g‘𝑀)) = 𝑔) | 
| 45 | 39, 44 | eqtrd 2776 | . 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑦, 𝑦〉(comp‘𝐶)𝑧)(0g‘𝑀)) = 𝑔) | 
| 46 | 9, 33 | mndcl 18756 | . . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀)) → (𝑔(+g‘𝑀)𝑓) ∈ (Base‘𝑀)) | 
| 47 | 22, 42, 32, 46 | syl3anc 1372 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g‘𝑀)𝑓) ∈ (Base‘𝑀)) | 
| 48 | 21, 22, 23, 24, 25, 37, 26 | mndtcco 49237 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (+g‘𝑀)) | 
| 49 | 48 | oveqd 7449 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(+g‘𝑀)𝑓)) | 
| 50 | 21, 22, 23, 24, 37, 30 | mndtchom 49236 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑧) = (Base‘𝑀)) | 
| 51 | 47, 49, 50 | 3eltr4d 2855 | . 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) | 
| 52 |  | simpr33 1265 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) | 
| 53 |  | simpr2r 1233 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑤 ∈ (Base‘𝐶)) | 
| 54 | 21, 22, 23, 37, 53, 30 | mndtchom 49236 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑧(Hom ‘𝐶)𝑤) = (Base‘𝑀)) | 
| 55 | 52, 54 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (Base‘𝑀)) | 
| 56 | 9, 33 | mndass 18757 | . . . 4
⊢ ((𝑀 ∈ Mnd ∧ (𝑘 ∈ (Base‘𝑀) ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀))) → ((𝑘(+g‘𝑀)𝑔)(+g‘𝑀)𝑓) = (𝑘(+g‘𝑀)(𝑔(+g‘𝑀)𝑓))) | 
| 57 | 22, 55, 42, 32, 56 | syl13anc 1373 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(+g‘𝑀)𝑔)(+g‘𝑀)𝑓) = (𝑘(+g‘𝑀)(𝑔(+g‘𝑀)𝑓))) | 
| 58 | 21, 22, 23, 24, 25, 53, 26 | mndtcco 49237 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑤) = (+g‘𝑀)) | 
| 59 | 21, 22, 23, 25, 37, 53, 26 | mndtcco 49237 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑦, 𝑧〉(comp‘𝐶)𝑤) = (+g‘𝑀)) | 
| 60 | 59 | oveqd 7449 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) = (𝑘(+g‘𝑀)𝑔)) | 
| 61 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 = 𝑓) | 
| 62 | 58, 60, 61 | oveq123d 7453 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = ((𝑘(+g‘𝑀)𝑔)(+g‘𝑀)𝑓)) | 
| 63 | 21, 22, 23, 24, 37, 53, 26 | mndtcco 49237 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑧〉(comp‘𝐶)𝑤) = (+g‘𝑀)) | 
| 64 |  | eqidd 2737 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 = 𝑘) | 
| 65 | 63, 64, 49 | oveq123d 7453 | . . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (𝑘(+g‘𝑀)(𝑔(+g‘𝑀)𝑓))) | 
| 66 | 57, 62, 65 | 3eqtr4d 2786 | . 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) | 
| 67 | 1, 2, 3, 6, 7, 20,
36, 45, 51, 66 | iscatd2 17725 | 1
⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) |