Step | Hyp | Ref
| Expression |
1 | | eqidd 2740 |
. 2
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) |
2 | | eqidd 2740 |
. 2
⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
3 | | eqidd 2740 |
. 2
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐶)) |
4 | | mndtccat.c |
. . 3
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
5 | | fvexd 6701 |
. . 3
⊢ (𝜑 → (MndToCat‘𝑀) ∈ V) |
6 | 4, 5 | eqeltrd 2834 |
. 2
⊢ (𝜑 → 𝐶 ∈ V) |
7 | | biid 264 |
. 2
⊢ (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) |
8 | | mndtccat.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ Mnd) |
9 | | eqid 2739 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
10 | | eqid 2739 |
. . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) |
11 | 9, 10 | mndidcl 18054 |
. . . . 5
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ (Base‘𝑀)) |
12 | 8, 11 | syl 17 |
. . . 4
⊢ (𝜑 → (0g‘𝑀) ∈ (Base‘𝑀)) |
13 | 12 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (0g‘𝑀) ∈ (Base‘𝑀)) |
14 | 4 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 = (MndToCat‘𝑀)) |
15 | 8 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑀 ∈ Mnd) |
16 | | eqidd 2740 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐶)) |
17 | | simpr 488 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
18 | | eqidd 2740 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶)) |
19 | 14, 15, 16, 17, 17, 18 | mndtchom 45871 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑦) = (Base‘𝑀)) |
20 | 13, 19 | eleqtrrd 2837 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → (0g‘𝑀) ∈ (𝑦(Hom ‘𝐶)𝑦)) |
21 | 4 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝐶 = (MndToCat‘𝑀)) |
22 | 8 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑀 ∈ Mnd) |
23 | | eqidd 2740 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Base‘𝐶) = (Base‘𝐶)) |
24 | | simpr1l 1231 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑥 ∈ (Base‘𝐶)) |
25 | | simpr1r 1232 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑦 ∈ (Base‘𝐶)) |
26 | | eqidd 2740 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (comp‘𝐶) = (comp‘𝐶)) |
27 | 21, 22, 23, 24, 25, 25, 26 | mndtcco 45872 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑦) = (+g‘𝑀)) |
28 | 27 | oveqd 7199 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g‘𝑀)(〈𝑥, 𝑦〉(comp‘𝐶)𝑦)𝑓) = ((0g‘𝑀)(+g‘𝑀)𝑓)) |
29 | | simpr31 1264 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
30 | | eqidd 2740 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Hom ‘𝐶) = (Hom ‘𝐶)) |
31 | 21, 22, 23, 24, 25, 30 | mndtchom 45871 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑦) = (Base‘𝑀)) |
32 | 29, 31 | eleqtrd 2836 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (Base‘𝑀)) |
33 | | eqid 2739 |
. . . . 5
⊢
(+g‘𝑀) = (+g‘𝑀) |
34 | 9, 33, 10 | mndlid 18059 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑓 ∈ (Base‘𝑀)) →
((0g‘𝑀)(+g‘𝑀)𝑓) = 𝑓) |
35 | 22, 32, 34 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g‘𝑀)(+g‘𝑀)𝑓) = 𝑓) |
36 | 28, 35 | eqtrd 2774 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g‘𝑀)(〈𝑥, 𝑦〉(comp‘𝐶)𝑦)𝑓) = 𝑓) |
37 | | simpr2l 1233 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑧 ∈ (Base‘𝐶)) |
38 | 21, 22, 23, 25, 25, 37, 26 | mndtcco 45872 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑦, 𝑦〉(comp‘𝐶)𝑧) = (+g‘𝑀)) |
39 | 38 | oveqd 7199 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑦, 𝑦〉(comp‘𝐶)𝑧)(0g‘𝑀)) = (𝑔(+g‘𝑀)(0g‘𝑀))) |
40 | | simpr32 1265 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
41 | 21, 22, 23, 25, 37, 30 | mndtchom 45871 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑦(Hom ‘𝐶)𝑧) = (Base‘𝑀)) |
42 | 40, 41 | eleqtrd 2836 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (Base‘𝑀)) |
43 | 9, 33, 10 | mndrid 18060 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀)) → (𝑔(+g‘𝑀)(0g‘𝑀)) = 𝑔) |
44 | 22, 42, 43 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g‘𝑀)(0g‘𝑀)) = 𝑔) |
45 | 39, 44 | eqtrd 2774 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑦, 𝑦〉(comp‘𝐶)𝑧)(0g‘𝑀)) = 𝑔) |
46 | 9, 33 | mndcl 18047 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀)) → (𝑔(+g‘𝑀)𝑓) ∈ (Base‘𝑀)) |
47 | 22, 42, 32, 46 | syl3anc 1372 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g‘𝑀)𝑓) ∈ (Base‘𝑀)) |
48 | 21, 22, 23, 24, 25, 37, 26 | mndtcco 45872 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (+g‘𝑀)) |
49 | 48 | oveqd 7199 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(+g‘𝑀)𝑓)) |
50 | 21, 22, 23, 24, 37, 30 | mndtchom 45871 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑧) = (Base‘𝑀)) |
51 | 47, 49, 50 | 3eltr4d 2849 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
52 | | simpr33 1266 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) |
53 | | simpr2r 1234 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑤 ∈ (Base‘𝐶)) |
54 | 21, 22, 23, 37, 53, 30 | mndtchom 45871 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑧(Hom ‘𝐶)𝑤) = (Base‘𝑀)) |
55 | 52, 54 | eleqtrd 2836 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (Base‘𝑀)) |
56 | 9, 33 | mndass 18048 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ (𝑘 ∈ (Base‘𝑀) ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀))) → ((𝑘(+g‘𝑀)𝑔)(+g‘𝑀)𝑓) = (𝑘(+g‘𝑀)(𝑔(+g‘𝑀)𝑓))) |
57 | 22, 55, 42, 32, 56 | syl13anc 1373 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(+g‘𝑀)𝑔)(+g‘𝑀)𝑓) = (𝑘(+g‘𝑀)(𝑔(+g‘𝑀)𝑓))) |
58 | 21, 22, 23, 24, 25, 53, 26 | mndtcco 45872 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑤) = (+g‘𝑀)) |
59 | 21, 22, 23, 25, 37, 53, 26 | mndtcco 45872 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑦, 𝑧〉(comp‘𝐶)𝑤) = (+g‘𝑀)) |
60 | 59 | oveqd 7199 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) = (𝑘(+g‘𝑀)𝑔)) |
61 | | eqidd 2740 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 = 𝑓) |
62 | 58, 60, 61 | oveq123d 7203 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = ((𝑘(+g‘𝑀)𝑔)(+g‘𝑀)𝑓)) |
63 | 21, 22, 23, 24, 37, 53, 26 | mndtcco 45872 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (〈𝑥, 𝑧〉(comp‘𝐶)𝑤) = (+g‘𝑀)) |
64 | | eqidd 2740 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 = 𝑘) |
65 | 63, 64, 49 | oveq123d 7203 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (𝑘(+g‘𝑀)(𝑔(+g‘𝑀)𝑓))) |
66 | 57, 62, 65 | 3eqtr4d 2784 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
67 | 1, 2, 3, 6, 7, 20,
36, 45, 51, 66 | iscatd2 17067 |
1
⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) |