Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtccatid Structured version   Visualization version   GIF version

Theorem mndtccatid 48150
Description: Lemma for mndtccat 48151 and mndtcid 48152. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtccat.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtccat.m (𝜑𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtccatid (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
Distinct variable groups:   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem mndtccatid
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2728 . 2 (𝜑 → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2728 . 2 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqidd 2728 . 2 (𝜑 → (comp‘𝐶) = (comp‘𝐶))
4 mndtccat.c . . 3 (𝜑𝐶 = (MndToCat‘𝑀))
5 fvexd 6915 . . 3 (𝜑 → (MndToCat‘𝑀) ∈ V)
64, 5eqeltrd 2828 . 2 (𝜑𝐶 ∈ V)
7 biid 260 . 2 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))))
8 mndtccat.m . . . . 5 (𝜑𝑀 ∈ Mnd)
9 eqid 2727 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
10 eqid 2727 . . . . . 6 (0g𝑀) = (0g𝑀)
119, 10mndidcl 18714 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
128, 11syl 17 . . . 4 (𝜑 → (0g𝑀) ∈ (Base‘𝑀))
1312adantr 479 . . 3 ((𝜑𝑦 ∈ (Base‘𝐶)) → (0g𝑀) ∈ (Base‘𝑀))
144adantr 479 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝐶 = (MndToCat‘𝑀))
158adantr 479 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑀 ∈ Mnd)
16 eqidd 2728 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐶))
17 simpr 483 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
18 eqidd 2728 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶))
1914, 15, 16, 17, 17, 18mndtchom 48147 . . 3 ((𝜑𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑦) = (Base‘𝑀))
2013, 19eleqtrrd 2831 . 2 ((𝜑𝑦 ∈ (Base‘𝐶)) → (0g𝑀) ∈ (𝑦(Hom ‘𝐶)𝑦))
214adantr 479 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝐶 = (MndToCat‘𝑀))
228adantr 479 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑀 ∈ Mnd)
23 eqidd 2728 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Base‘𝐶) = (Base‘𝐶))
24 simpr1l 1227 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
25 simpr1r 1228 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
26 eqidd 2728 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (comp‘𝐶) = (comp‘𝐶))
2721, 22, 23, 24, 25, 25, 26mndtcco 48148 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦) = (+g𝑀))
2827oveqd 7441 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦)𝑓) = ((0g𝑀)(+g𝑀)𝑓))
29 simpr31 1260 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
30 eqidd 2728 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Hom ‘𝐶) = (Hom ‘𝐶))
3121, 22, 23, 24, 25, 30mndtchom 48147 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑦) = (Base‘𝑀))
3229, 31eleqtrd 2830 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (Base‘𝑀))
33 eqid 2727 . . . . 5 (+g𝑀) = (+g𝑀)
349, 33, 10mndlid 18719 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)𝑓) = 𝑓)
3522, 32, 34syl2anc 582 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(+g𝑀)𝑓) = 𝑓)
3628, 35eqtrd 2767 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦)𝑓) = 𝑓)
37 simpr2l 1229 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
3821, 22, 23, 25, 25, 37, 26mndtcco 48148 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧) = (+g𝑀))
3938oveqd 7441 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧)(0g𝑀)) = (𝑔(+g𝑀)(0g𝑀)))
40 simpr32 1261 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
4121, 22, 23, 25, 37, 30mndtchom 48147 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑦(Hom ‘𝐶)𝑧) = (Base‘𝑀))
4240, 41eleqtrd 2830 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (Base‘𝑀))
439, 33, 10mndrid 18720 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀)) → (𝑔(+g𝑀)(0g𝑀)) = 𝑔)
4422, 42, 43syl2anc 582 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g𝑀)(0g𝑀)) = 𝑔)
4539, 44eqtrd 2767 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧)(0g𝑀)) = 𝑔)
469, 33mndcl 18707 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀)) → (𝑔(+g𝑀)𝑓) ∈ (Base‘𝑀))
4722, 42, 32, 46syl3anc 1368 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g𝑀)𝑓) ∈ (Base‘𝑀))
4821, 22, 23, 24, 25, 37, 26mndtcco 48148 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (+g𝑀))
4948oveqd 7441 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(+g𝑀)𝑓))
5021, 22, 23, 24, 37, 30mndtchom 48147 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑧) = (Base‘𝑀))
5147, 49, 503eltr4d 2843 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
52 simpr33 1262 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
53 simpr2r 1230 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
5421, 22, 23, 37, 53, 30mndtchom 48147 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑧(Hom ‘𝐶)𝑤) = (Base‘𝑀))
5552, 54eleqtrd 2830 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (Base‘𝑀))
569, 33mndass 18708 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑘 ∈ (Base‘𝑀) ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀))) → ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
5722, 55, 42, 32, 56syl13anc 1369 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
5821, 22, 23, 24, 25, 53, 26mndtcco 48148 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤) = (+g𝑀))
5921, 22, 23, 25, 37, 53, 26mndtcco 48148 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤) = (+g𝑀))
6059oveqd 7441 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) = (𝑘(+g𝑀)𝑔))
61 eqidd 2728 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 = 𝑓)
6258, 60, 61oveq123d 7445 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓))
6321, 22, 23, 24, 37, 53, 26mndtcco 48148 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤) = (+g𝑀))
64 eqidd 2728 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 = 𝑘)
6563, 64, 49oveq123d 7445 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
6657, 62, 653eqtr4d 2777 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
671, 2, 3, 6, 7, 20, 36, 45, 51, 66iscatd2 17666 1 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3471  cop 4636  cmpt 5233  cfv 6551  (class class class)co 7424  Basecbs 17185  +gcplusg 17238  Hom chom 17249  compcco 17250  0gc0g 17426  Catccat 17649  Idccid 17650  Mndcmnd 18699  MndToCatcmndtc 48140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-slot 17156  df-ndx 17168  df-base 17186  df-hom 17262  df-cco 17263  df-0g 17428  df-cat 17653  df-cid 17654  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mndtc 48141
This theorem is referenced by:  mndtccat  48151  mndtcid  48152
  Copyright terms: Public domain W3C validator