Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtccatid Structured version   Visualization version   GIF version

Theorem mndtccatid 49431
Description: Lemma for mndtccat 49432 and mndtcid 49433. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtccat.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtccat.m (𝜑𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtccatid (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
Distinct variable groups:   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem mndtccatid
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (𝜑 → (Base‘𝐶) = (Base‘𝐶))
2 eqidd 2737 . 2 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqidd 2737 . 2 (𝜑 → (comp‘𝐶) = (comp‘𝐶))
4 mndtccat.c . . 3 (𝜑𝐶 = (MndToCat‘𝑀))
5 fvexd 6896 . . 3 (𝜑 → (MndToCat‘𝑀) ∈ V)
64, 5eqeltrd 2835 . 2 (𝜑𝐶 ∈ V)
7 biid 261 . 2 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))))
8 mndtccat.m . . . . 5 (𝜑𝑀 ∈ Mnd)
9 eqid 2736 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
10 eqid 2736 . . . . . 6 (0g𝑀) = (0g𝑀)
119, 10mndidcl 18732 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
128, 11syl 17 . . . 4 (𝜑 → (0g𝑀) ∈ (Base‘𝑀))
1312adantr 480 . . 3 ((𝜑𝑦 ∈ (Base‘𝐶)) → (0g𝑀) ∈ (Base‘𝑀))
144adantr 480 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝐶 = (MndToCat‘𝑀))
158adantr 480 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑀 ∈ Mnd)
16 eqidd 2737 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐶))
17 simpr 484 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
18 eqidd 2737 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶))
1914, 15, 16, 17, 17, 18mndtchom 49428 . . 3 ((𝜑𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑦) = (Base‘𝑀))
2013, 19eleqtrrd 2838 . 2 ((𝜑𝑦 ∈ (Base‘𝐶)) → (0g𝑀) ∈ (𝑦(Hom ‘𝐶)𝑦))
214adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝐶 = (MndToCat‘𝑀))
228adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑀 ∈ Mnd)
23 eqidd 2737 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Base‘𝐶) = (Base‘𝐶))
24 simpr1l 1231 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
25 simpr1r 1232 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
26 eqidd 2737 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (comp‘𝐶) = (comp‘𝐶))
2721, 22, 23, 24, 25, 25, 26mndtcco 49429 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦) = (+g𝑀))
2827oveqd 7427 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦)𝑓) = ((0g𝑀)(+g𝑀)𝑓))
29 simpr31 1264 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
30 eqidd 2737 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (Hom ‘𝐶) = (Hom ‘𝐶))
3121, 22, 23, 24, 25, 30mndtchom 49428 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑦) = (Base‘𝑀))
3229, 31eleqtrd 2837 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 ∈ (Base‘𝑀))
33 eqid 2736 . . . . 5 (+g𝑀) = (+g𝑀)
349, 33, 10mndlid 18737 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)𝑓) = 𝑓)
3522, 32, 34syl2anc 584 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(+g𝑀)𝑓) = 𝑓)
3628, 35eqtrd 2771 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((0g𝑀)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑦)𝑓) = 𝑓)
37 simpr2l 1233 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
3821, 22, 23, 25, 25, 37, 26mndtcco 49429 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧) = (+g𝑀))
3938oveqd 7427 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧)(0g𝑀)) = (𝑔(+g𝑀)(0g𝑀)))
40 simpr32 1265 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
4121, 22, 23, 25, 37, 30mndtchom 49428 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑦(Hom ‘𝐶)𝑧) = (Base‘𝑀))
4240, 41eleqtrd 2837 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑔 ∈ (Base‘𝑀))
439, 33, 10mndrid 18738 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀)) → (𝑔(+g𝑀)(0g𝑀)) = 𝑔)
4422, 42, 43syl2anc 584 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g𝑀)(0g𝑀)) = 𝑔)
4539, 44eqtrd 2771 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑧)(0g𝑀)) = 𝑔)
469, 33mndcl 18725 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀)) → (𝑔(+g𝑀)𝑓) ∈ (Base‘𝑀))
4722, 42, 32, 46syl3anc 1373 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(+g𝑀)𝑓) ∈ (Base‘𝑀))
4821, 22, 23, 24, 25, 37, 26mndtcco 49429 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (+g𝑀))
4948oveqd 7427 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(+g𝑀)𝑓))
5021, 22, 23, 24, 37, 30mndtchom 49428 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑥(Hom ‘𝐶)𝑧) = (Base‘𝑀))
5147, 49, 503eltr4d 2850 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
52 simpr33 1266 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
53 simpr2r 1234 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
5421, 22, 23, 37, 53, 30mndtchom 49428 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑧(Hom ‘𝐶)𝑤) = (Base‘𝑀))
5552, 54eleqtrd 2837 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 ∈ (Base‘𝑀))
569, 33mndass 18726 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑘 ∈ (Base‘𝑀) ∧ 𝑔 ∈ (Base‘𝑀) ∧ 𝑓 ∈ (Base‘𝑀))) → ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
5722, 55, 42, 32, 56syl13anc 1374 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
5821, 22, 23, 24, 25, 53, 26mndtcco 49429 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤) = (+g𝑀))
5921, 22, 23, 25, 37, 53, 26mndtcco 49429 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤) = (+g𝑀))
6059oveqd 7427 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) = (𝑘(+g𝑀)𝑔))
61 eqidd 2737 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑓 = 𝑓)
6258, 60, 61oveq123d 7431 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((𝑘(+g𝑀)𝑔)(+g𝑀)𝑓))
6321, 22, 23, 24, 37, 53, 26mndtcco 49429 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤) = (+g𝑀))
64 eqidd 2737 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → 𝑘 = 𝑘)
6563, 64, 49oveq123d 7431 . . 3 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑘(+g𝑀)(𝑔(+g𝑀)𝑓)))
6657, 62, 653eqtr4d 2781 . 2 ((𝜑 ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))) → ((𝑘(⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
671, 2, 3, 6, 7, 20, 36, 45, 51, 66iscatd2 17698 1 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  cmpt 5206  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Hom chom 17287  compcco 17288  0gc0g 17458  Catccat 17681  Idccid 17682  Mndcmnd 18717  MndToCatcmndtc 49421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-0g 17460  df-cat 17685  df-cid 17686  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mndtc 49422
This theorem is referenced by:  mndtccat  49432  mndtcid  49433
  Copyright terms: Public domain W3C validator