MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpccatid Structured version   Visualization version   GIF version

Theorem xpccatid 18156
Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccat.t 𝑇 = (𝐶 ×c 𝐷)
xpccat.c (𝜑𝐶 ∈ Cat)
xpccat.d (𝜑𝐷 ∈ Cat)
xpccat.x 𝑋 = (Base‘𝐶)
xpccat.y 𝑌 = (Base‘𝐷)
xpccat.i 𝐼 = (Id‘𝐶)
xpccat.j 𝐽 = (Id‘𝐷)
Assertion
Ref Expression
xpccatid (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩)))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐷,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem xpccatid
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpccat.t . . . . 5 𝑇 = (𝐶 ×c 𝐷)
2 xpccat.x . . . . 5 𝑋 = (Base‘𝐶)
3 xpccat.y . . . . 5 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 18146 . . . 4 (𝑋 × 𝑌) = (Base‘𝑇)
54a1i 11 . . 3 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
6 eqidd 2731 . . 3 (𝜑 → (Hom ‘𝑇) = (Hom ‘𝑇))
7 eqidd 2731 . . 3 (𝜑 → (comp‘𝑇) = (comp‘𝑇))
81ovexi 7424 . . . 4 𝑇 ∈ V
98a1i 11 . . 3 (𝜑𝑇 ∈ V)
10 biid 261 . . 3 (((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣))) ↔ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣))))
11 eqid 2730 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 xpccat.i . . . . . 6 𝐼 = (Id‘𝐶)
13 xpccat.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
1413adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝐶 ∈ Cat)
15 xp1st 8003 . . . . . . 7 (𝑡 ∈ (𝑋 × 𝑌) → (1st𝑡) ∈ 𝑋)
1615adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝑡) ∈ 𝑋)
172, 11, 12, 14, 16catidcl 17650 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝐼‘(1st𝑡)) ∈ ((1st𝑡)(Hom ‘𝐶)(1st𝑡)))
18 eqid 2730 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
19 xpccat.j . . . . . 6 𝐽 = (Id‘𝐷)
20 xpccat.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
2120adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝐷 ∈ Cat)
22 xp2nd 8004 . . . . . . 7 (𝑡 ∈ (𝑋 × 𝑌) → (2nd𝑡) ∈ 𝑌)
2322adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝑡) ∈ 𝑌)
243, 18, 19, 21, 23catidcl 17650 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝐽‘(2nd𝑡)) ∈ ((2nd𝑡)(Hom ‘𝐷)(2nd𝑡)))
2517, 24opelxpd 5680 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩ ∈ (((1st𝑡)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑡))))
26 eqid 2730 . . . . 5 (Hom ‘𝑇) = (Hom ‘𝑇)
27 simpr 484 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑡 ∈ (𝑋 × 𝑌))
281, 4, 11, 18, 26, 27, 27xpchom 18148 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝑡(Hom ‘𝑇)𝑡) = (((1st𝑡)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑡))))
2925, 28eleqtrrd 2832 . . 3 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩ ∈ (𝑡(Hom ‘𝑇)𝑡))
30 fvex 6874 . . . . . . . 8 (𝐼‘(1st𝑡)) ∈ V
31 fvex 6874 . . . . . . . 8 (𝐽‘(2nd𝑡)) ∈ V
3230, 31op1st 7979 . . . . . . 7 (1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩) = (𝐼‘(1st𝑡))
3332oveq1i 7400 . . . . . 6 ((1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑡))(1st𝑓)) = ((𝐼‘(1st𝑡))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑡))(1st𝑓))
3413adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝐶 ∈ Cat)
35 simpr1l 1231 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑠 ∈ (𝑋 × 𝑌))
36 xp1st 8003 . . . . . . . 8 (𝑠 ∈ (𝑋 × 𝑌) → (1st𝑠) ∈ 𝑋)
3735, 36syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st𝑠) ∈ 𝑋)
38 eqid 2730 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
39 simpr1r 1232 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑡 ∈ (𝑋 × 𝑌))
4039, 15syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st𝑡) ∈ 𝑋)
41 simpr31 1264 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡))
421, 4, 11, 18, 26, 35, 39xpchom 18148 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑠(Hom ‘𝑇)𝑡) = (((1st𝑠)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡))))
4341, 42eleqtrd 2831 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑓 ∈ (((1st𝑠)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡))))
44 xp1st 8003 . . . . . . . 8 (𝑓 ∈ (((1st𝑠)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡))) → (1st𝑓) ∈ ((1st𝑠)(Hom ‘𝐶)(1st𝑡)))
4543, 44syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st𝑓) ∈ ((1st𝑠)(Hom ‘𝐶)(1st𝑡)))
462, 11, 12, 34, 37, 38, 40, 45catlid 17651 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((𝐼‘(1st𝑡))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑡))(1st𝑓)) = (1st𝑓))
4733, 46eqtrid 2777 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑡))(1st𝑓)) = (1st𝑓))
4830, 31op2nd 7980 . . . . . . 7 (2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩) = (𝐽‘(2nd𝑡))
4948oveq1i 7400 . . . . . 6 ((2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑡))(2nd𝑓)) = ((𝐽‘(2nd𝑡))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑡))(2nd𝑓))
5020adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝐷 ∈ Cat)
51 xp2nd 8004 . . . . . . . 8 (𝑠 ∈ (𝑋 × 𝑌) → (2nd𝑠) ∈ 𝑌)
5235, 51syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd𝑠) ∈ 𝑌)
53 eqid 2730 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
5439, 22syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd𝑡) ∈ 𝑌)
55 xp2nd 8004 . . . . . . . 8 (𝑓 ∈ (((1st𝑠)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡))) → (2nd𝑓) ∈ ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡)))
5643, 55syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd𝑓) ∈ ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡)))
573, 18, 19, 50, 52, 53, 54, 56catlid 17651 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((𝐽‘(2nd𝑡))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑡))(2nd𝑓)) = (2nd𝑓))
5849, 57eqtrid 2777 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑡))(2nd𝑓)) = (2nd𝑓))
5947, 58opeq12d 4848 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ⟨((1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑡))(1st𝑓)), ((2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑡))(2nd𝑓))⟩ = ⟨(1st𝑓), (2nd𝑓)⟩)
60 eqid 2730 . . . . 5 (comp‘𝑇) = (comp‘𝑇)
6139, 29syldan 591 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩ ∈ (𝑡(Hom ‘𝑇)𝑡))
621, 4, 26, 38, 53, 60, 35, 39, 39, 41, 61xpcco 18151 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑡)𝑓) = ⟨((1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑡))(1st𝑓)), ((2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑡))(2nd𝑓))⟩)
63 1st2nd2 8010 . . . . 5 (𝑓 ∈ (((1st𝑠)(Hom ‘𝐶)(1st𝑡)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑡))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
6443, 63syl 17 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
6559, 62, 643eqtr4d 2775 . . 3 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑡)𝑓) = 𝑓)
6632oveq2i 7401 . . . . . 6 ((1st𝑔)(⟨(1st𝑡), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)) = ((1st𝑔)(⟨(1st𝑡), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(𝐼‘(1st𝑡)))
67 simpr2l 1233 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑢 ∈ (𝑋 × 𝑌))
68 xp1st 8003 . . . . . . . 8 (𝑢 ∈ (𝑋 × 𝑌) → (1st𝑢) ∈ 𝑋)
6967, 68syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st𝑢) ∈ 𝑋)
70 simpr32 1265 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢))
711, 4, 11, 18, 26, 39, 67xpchom 18148 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑡(Hom ‘𝑇)𝑢) = (((1st𝑡)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢))))
7270, 71eleqtrd 2831 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑔 ∈ (((1st𝑡)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢))))
73 xp1st 8003 . . . . . . . 8 (𝑔 ∈ (((1st𝑡)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢))) → (1st𝑔) ∈ ((1st𝑡)(Hom ‘𝐶)(1st𝑢)))
7472, 73syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st𝑔) ∈ ((1st𝑡)(Hom ‘𝐶)(1st𝑢)))
752, 11, 12, 34, 40, 38, 69, 74catrid 17652 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st𝑔)(⟨(1st𝑡), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(𝐼‘(1st𝑡))) = (1st𝑔))
7666, 75eqtrid 2777 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st𝑔)(⟨(1st𝑡), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)) = (1st𝑔))
7748oveq2i 7401 . . . . . 6 ((2nd𝑔)(⟨(2nd𝑡), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)) = ((2nd𝑔)(⟨(2nd𝑡), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(𝐽‘(2nd𝑡)))
78 xp2nd 8004 . . . . . . . 8 (𝑢 ∈ (𝑋 × 𝑌) → (2nd𝑢) ∈ 𝑌)
7967, 78syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd𝑢) ∈ 𝑌)
80 xp2nd 8004 . . . . . . . 8 (𝑔 ∈ (((1st𝑡)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢))) → (2nd𝑔) ∈ ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢)))
8172, 80syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd𝑔) ∈ ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢)))
823, 18, 19, 50, 54, 53, 79, 81catrid 17652 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd𝑔)(⟨(2nd𝑡), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(𝐽‘(2nd𝑡))) = (2nd𝑔))
8377, 82eqtrid 2777 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd𝑔)(⟨(2nd𝑡), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)) = (2nd𝑔))
8476, 83opeq12d 4848 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ⟨((1st𝑔)(⟨(1st𝑡), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)), ((2nd𝑔)(⟨(2nd𝑡), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩))⟩ = ⟨(1st𝑔), (2nd𝑔)⟩)
851, 4, 26, 38, 53, 60, 39, 39, 67, 61, 70xpcco 18151 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑔(⟨𝑡, 𝑡⟩(comp‘𝑇)𝑢)⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩) = ⟨((1st𝑔)(⟨(1st𝑡), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)), ((2nd𝑔)(⟨(2nd𝑡), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd ‘⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩))⟩)
86 1st2nd2 8010 . . . . 5 (𝑔 ∈ (((1st𝑡)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑢))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
8772, 86syl 17 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
8884, 85, 873eqtr4d 2775 . . 3 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑔(⟨𝑡, 𝑡⟩(comp‘𝑇)𝑢)⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩) = 𝑔)
892, 11, 38, 34, 37, 40, 69, 45, 74catcocl 17653 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)) ∈ ((1st𝑠)(Hom ‘𝐶)(1st𝑢)))
903, 18, 53, 50, 52, 54, 79, 56, 81catcocl 17653 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓)) ∈ ((2nd𝑠)(Hom ‘𝐷)(2nd𝑢)))
9189, 90opelxpd 5680 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ⟨((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))⟩ ∈ (((1st𝑠)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑢))))
921, 4, 26, 38, 53, 60, 35, 39, 67, 41, 70xpcco 18151 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓) = ⟨((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))⟩)
931, 4, 11, 18, 26, 35, 67xpchom 18148 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑠(Hom ‘𝑇)𝑢) = (((1st𝑠)(Hom ‘𝐶)(1st𝑢)) × ((2nd𝑠)(Hom ‘𝐷)(2nd𝑢))))
9491, 92, 933eltr4d 2844 . . 3 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓) ∈ (𝑠(Hom ‘𝑇)𝑢))
95 simpr2r 1234 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → 𝑣 ∈ (𝑋 × 𝑌))
96 xp1st 8003 . . . . . . . 8 (𝑣 ∈ (𝑋 × 𝑌) → (1st𝑣) ∈ 𝑋)
9795, 96syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st𝑣) ∈ 𝑋)
98 simpr33 1266 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ∈ (𝑢(Hom ‘𝑇)𝑣))
991, 4, 11, 18, 26, 67, 95xpchom 18148 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑢(Hom ‘𝑇)𝑣) = (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))
10098, 99eleqtrd 2831 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ∈ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))
101 xp1st 8003 . . . . . . . 8 ( ∈ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))) → (1st) ∈ ((1st𝑢)(Hom ‘𝐶)(1st𝑣)))
102100, 101syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st) ∈ ((1st𝑢)(Hom ‘𝐶)(1st𝑣)))
1032, 11, 38, 34, 37, 40, 69, 45, 74, 97, 102catass 17654 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑣))(1st𝑓)) = ((1st)(⟨(1st𝑠), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓))))
1041, 4, 26, 38, 53, 60, 39, 67, 95, 70, 98xpcco 18151 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔) = ⟨((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)), ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))⟩)
105104fveq2d 6865 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔)) = (1st ‘⟨((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)), ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))⟩))
106 ovex 7423 . . . . . . . . 9 ((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)) ∈ V
107 ovex 7423 . . . . . . . . 9 ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔)) ∈ V
108106, 107op1st 7979 . . . . . . . 8 (1st ‘⟨((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)), ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))⟩) = ((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔))
109105, 108eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔)) = ((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)))
110109oveq1d 7405 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑣))(1st𝑓)) = (((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑣))(1st𝑓)))
11192fveq2d 6865 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)) = (1st ‘⟨((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))⟩))
112 ovex 7423 . . . . . . . . 9 ((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)) ∈ V
113 ovex 7423 . . . . . . . . 9 ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓)) ∈ V
114112, 113op1st 7979 . . . . . . . 8 (1st ‘⟨((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))⟩) = ((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓))
115111, 114eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (1st ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)) = ((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)))
116115oveq2d 7406 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st)(⟨(1st𝑠), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓))) = ((1st)(⟨(1st𝑠), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓))))
117103, 110, 1163eqtr4d 2775 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑣))(1st𝑓)) = ((1st)(⟨(1st𝑠), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓))))
118 xp2nd 8004 . . . . . . . 8 (𝑣 ∈ (𝑋 × 𝑌) → (2nd𝑣) ∈ 𝑌)
11995, 118syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd𝑣) ∈ 𝑌)
120 xp2nd 8004 . . . . . . . 8 ( ∈ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))) → (2nd) ∈ ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))
121100, 120syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd) ∈ ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))
1223, 18, 53, 50, 52, 54, 79, 56, 81, 119, 121catass 17654 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑓)) = ((2nd)(⟨(2nd𝑠), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))))
123104fveq2d 6865 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔)) = (2nd ‘⟨((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)), ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))⟩))
124106, 107op2nd 7980 . . . . . . . 8 (2nd ‘⟨((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)), ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))⟩) = ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))
125123, 124eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔)) = ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔)))
126125oveq1d 7405 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑓)) = (((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑓)))
12792fveq2d 6865 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)) = (2nd ‘⟨((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))⟩))
128112, 113op2nd 7980 . . . . . . . 8 (2nd ‘⟨((1st𝑔)(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑢))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))⟩) = ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))
129127, 128eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (2nd ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)) = ((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓)))
130129oveq2d 7406 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd)(⟨(2nd𝑠), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓))) = ((2nd)(⟨(2nd𝑠), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))((2nd𝑔)(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑢))(2nd𝑓))))
131122, 126, 1303eqtr4d 2775 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑓)) = ((2nd)(⟨(2nd𝑠), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓))))
132117, 131opeq12d 4848 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ⟨((1st ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑣))(1st𝑓)), ((2nd ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑓))⟩ = ⟨((1st)(⟨(1st𝑠), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓))), ((2nd)(⟨(2nd𝑠), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)))⟩)
1332, 11, 38, 34, 40, 69, 97, 74, 102catcocl 17653 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)) ∈ ((1st𝑡)(Hom ‘𝐶)(1st𝑣)))
1343, 18, 53, 50, 54, 79, 119, 81, 121catcocl 17653 . . . . . . 7 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔)) ∈ ((2nd𝑡)(Hom ‘𝐷)(2nd𝑣)))
135133, 134opelxpd 5680 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ⟨((1st)(⟨(1st𝑡), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st𝑔)), ((2nd)(⟨(2nd𝑡), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑔))⟩ ∈ (((1st𝑡)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑣))))
1361, 4, 11, 18, 26, 39, 95xpchom 18148 . . . . . 6 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (𝑡(Hom ‘𝑇)𝑣) = (((1st𝑡)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑡)(Hom ‘𝐷)(2nd𝑣))))
137135, 104, 1363eltr4d 2844 . . . . 5 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔) ∈ (𝑡(Hom ‘𝑇)𝑣))
1381, 4, 26, 38, 53, 60, 35, 39, 95, 41, 137xpcco 18151 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔)(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑣)𝑓) = ⟨((1st ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(1st𝑠), (1st𝑡)⟩(comp‘𝐶)(1st𝑣))(1st𝑓)), ((2nd ‘((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔))(⟨(2nd𝑠), (2nd𝑡)⟩(comp‘𝐷)(2nd𝑣))(2nd𝑓))⟩)
1391, 4, 26, 38, 53, 60, 35, 67, 95, 94, 98xpcco 18151 . . . 4 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → ((⟨𝑠, 𝑢⟩(comp‘𝑇)𝑣)(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)) = ⟨((1st)(⟨(1st𝑠), (1st𝑢)⟩(comp‘𝐶)(1st𝑣))(1st ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓))), ((2nd)(⟨(2nd𝑠), (2nd𝑢)⟩(comp‘𝐷)(2nd𝑣))(2nd ‘(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)))⟩)
140132, 138, 1393eqtr4d 2775 . . 3 ((𝜑 ∧ ((𝑠 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌)) ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) ∧ (𝑓 ∈ (𝑠(Hom ‘𝑇)𝑡) ∧ 𝑔 ∈ (𝑡(Hom ‘𝑇)𝑢) ∧ ∈ (𝑢(Hom ‘𝑇)𝑣)))) → (((⟨𝑡, 𝑢⟩(comp‘𝑇)𝑣)𝑔)(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑣)𝑓) = ((⟨𝑠, 𝑢⟩(comp‘𝑇)𝑣)(𝑔(⟨𝑠, 𝑡⟩(comp‘𝑇)𝑢)𝑓)))
1415, 6, 7, 9, 10, 29, 65, 88, 94, 140iscatd2 17649 . 2 (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑡 ∈ (𝑋 × 𝑌) ↦ ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)))
142 vex 3454 . . . . . . . 8 𝑥 ∈ V
143 vex 3454 . . . . . . . 8 𝑦 ∈ V
144142, 143op1std 7981 . . . . . . 7 (𝑡 = ⟨𝑥, 𝑦⟩ → (1st𝑡) = 𝑥)
145144fveq2d 6865 . . . . . 6 (𝑡 = ⟨𝑥, 𝑦⟩ → (𝐼‘(1st𝑡)) = (𝐼𝑥))
146142, 143op2ndd 7982 . . . . . . 7 (𝑡 = ⟨𝑥, 𝑦⟩ → (2nd𝑡) = 𝑦)
147146fveq2d 6865 . . . . . 6 (𝑡 = ⟨𝑥, 𝑦⟩ → (𝐽‘(2nd𝑡)) = (𝐽𝑦))
148145, 147opeq12d 4848 . . . . 5 (𝑡 = ⟨𝑥, 𝑦⟩ → ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩ = ⟨(𝐼𝑥), (𝐽𝑦)⟩)
149148mpompt 7506 . . . 4 (𝑡 ∈ (𝑋 × 𝑌) ↦ ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩)
150149eqeq2i 2743 . . 3 ((Id‘𝑇) = (𝑡 ∈ (𝑋 × 𝑌) ↦ ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩) ↔ (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩))
151150anbi2i 623 . 2 ((𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑡 ∈ (𝑋 × 𝑌) ↦ ⟨(𝐼‘(1st𝑡)), (𝐽‘(2nd𝑡))⟩)) ↔ (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩)))
152141, 151sylib 218 1 (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633   ×c cxpc 18136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-xpc 18140
This theorem is referenced by:  xpcid  18157  xpccat  18158
  Copyright terms: Public domain W3C validator