MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccatid Structured version   Visualization version   GIF version

Theorem fuccatid 17958
Description: The functor category is a category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuccat.q 𝑄 = (𝐶 FuncCat 𝐷)
fuccat.r (𝜑𝐶 ∈ Cat)
fuccat.s (𝜑𝐷 ∈ Cat)
fuccatid.1 1 = (Id‘𝐷)
Assertion
Ref Expression
fuccatid (𝜑 → (𝑄 ∈ Cat ∧ (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st𝑓)))))
Distinct variable groups:   𝐶,𝑓   𝜑,𝑓   𝐷,𝑓   𝑄,𝑓
Allowed substitution hint:   1 (𝑓)

Proof of Theorem fuccatid
Dummy variables 𝑒 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuccat.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17948 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
32a1i 11 . 2 (𝜑 → (𝐶 Func 𝐷) = (Base‘𝑄))
4 eqid 2725 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
51, 4fuchom 17949 . . 3 (𝐶 Nat 𝐷) = (Hom ‘𝑄)
65a1i 11 . 2 (𝜑 → (𝐶 Nat 𝐷) = (Hom ‘𝑄))
7 eqidd 2726 . 2 (𝜑 → (comp‘𝑄) = (comp‘𝑄))
81ovexi 7448 . . 3 𝑄 ∈ V
98a1i 11 . 2 (𝜑𝑄 ∈ V)
10 biid 260 . 2 (((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷)))) ↔ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷)))))
11 fuccatid.1 . . 3 1 = (Id‘𝐷)
12 simpr 483 . . 3 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
131, 4, 11, 12fucidcl 17954 . 2 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ( 1 ∘ (1st𝑓)) ∈ (𝑓(𝐶 Nat 𝐷)𝑓))
14 eqid 2725 . . 3 (comp‘𝑄) = (comp‘𝑄)
15 simpr31 1260 . . 3 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → 𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓))
161, 4, 14, 11, 15fuclid 17955 . 2 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → (( 1 ∘ (1st𝑓))(⟨𝑒, 𝑓⟩(comp‘𝑄)𝑓)𝑟) = 𝑟)
17 simpr32 1261 . . 3 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))
181, 4, 14, 11, 17fucrid 17956 . 2 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → (𝑠(⟨𝑓, 𝑓⟩(comp‘𝑄)𝑔)( 1 ∘ (1st𝑓))) = 𝑠)
191, 4, 14, 15, 17fuccocl 17953 . 2 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → (𝑠(⟨𝑒, 𝑓⟩(comp‘𝑄)𝑔)𝑟) ∈ (𝑒(𝐶 Nat 𝐷)𝑔))
20 simpr33 1262 . . 3 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → 𝑡 ∈ (𝑔(𝐶 Nat 𝐷)))
211, 4, 14, 15, 17, 20fucass 17957 . 2 ((𝜑 ∧ ((𝑒 ∈ (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ ∈ (𝐶 Func 𝐷)) ∧ (𝑟 ∈ (𝑒(𝐶 Nat 𝐷)𝑓) ∧ 𝑠 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑡 ∈ (𝑔(𝐶 Nat 𝐷))))) → ((𝑡(⟨𝑓, 𝑔⟩(comp‘𝑄))𝑠)(⟨𝑒, 𝑓⟩(comp‘𝑄))𝑟) = (𝑡(⟨𝑒, 𝑔⟩(comp‘𝑄))(𝑠(⟨𝑒, 𝑓⟩(comp‘𝑄)𝑔)𝑟)))
223, 6, 7, 9, 10, 13, 16, 18, 19, 21iscatd2 17658 1 (𝜑 → (𝑄 ∈ Cat ∧ (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3463  cmpt 5224  ccom 5674  cfv 6541  (class class class)co 7414  1st c1st 7987  Basecbs 17177  Hom chom 17241  compcco 17242  Catccat 17641  Idccid 17642   Func cfunc 17837   Nat cnat 17928   FuncCat cfuc 17929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-struct 17113  df-slot 17148  df-ndx 17160  df-base 17178  df-hom 17254  df-cco 17255  df-cat 17645  df-cid 17646  df-func 17841  df-nat 17930  df-fuc 17931
This theorem is referenced by:  fuccat  17959  fucid  17960
  Copyright terms: Public domain W3C validator