MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccatid Structured version   Visualization version   GIF version

Theorem oppccatid 17762
Description: Lemma for oppccat 17765. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppccatid (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))

Proof of Theorem oppccatid
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . 5 𝑂 = (oppCat‘𝐶)
2 eqid 2737 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17761 . . . 4 (Base‘𝐶) = (Base‘𝑂)
43a1i 11 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) = (Base‘𝑂))
5 eqidd 2738 . . 3 (𝐶 ∈ Cat → (Hom ‘𝑂) = (Hom ‘𝑂))
6 eqidd 2738 . . 3 (𝐶 ∈ Cat → (comp‘𝑂) = (comp‘𝑂))
71fvexi 6920 . . . 4 𝑂 ∈ V
87a1i 11 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ V)
9 biid 261 . . 3 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))))
10 eqid 2737 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2737 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
12 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
13 simpr 484 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
142, 10, 11, 12, 13catidcl 17725 . . . 4 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
1510, 1oppchom 17758 . . . 4 (𝑦(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑦)
1614, 15eleqtrrdi 2852 . . 3 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝑂)𝑦))
17 eqid 2737 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
18 simpr1l 1231 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
19 simpr1r 1232 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
202, 17, 1, 18, 19, 19oppcco 17760 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)))
21 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝐶 ∈ Cat)
22 simpr31 1264 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
2310, 1oppchom 17758 . . . . . 6 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
2422, 23eleqtrdi 2851 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
252, 10, 11, 21, 19, 17, 18, 24catrid 17727 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)) = 𝑓)
2620, 25eqtrd 2777 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = 𝑓)
27 simpr2l 1233 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
282, 17, 1, 19, 19, 27oppcco 17760 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔))
29 simpr32 1265 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
3010, 1oppchom 17758 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
3129, 30eleqtrdi 2851 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
322, 10, 11, 21, 27, 17, 19, 31catlid 17726 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔) = 𝑔)
3328, 32eqtrd 2777 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = 𝑔)
342, 17, 1, 18, 19, 27oppcco 17760 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
352, 10, 17, 21, 27, 19, 18, 31, 24catcocl 17728 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) ∈ (𝑧(Hom ‘𝐶)𝑥))
3634, 35eqeltrd 2841 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑧(Hom ‘𝐶)𝑥))
3710, 1oppchom 17758 . . . 4 (𝑥(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑥)
3836, 37eleqtrrdi 2852 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑂)𝑧))
39 simpr2r 1234 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
40 simpr33 1266 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
4110, 1oppchom 17758 . . . . . . 7 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
4240, 41eleqtrdi 2851 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑤(Hom ‘𝐶)𝑧))
432, 10, 17, 21, 39, 27, 19, 42, 31, 18, 24catass 17729 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
442, 17, 1, 18, 27, 39oppcco 17760 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)))
452, 17, 1, 18, 19, 39oppcco 17760 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
4643, 44, 453eqtr4rd 2788 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
472, 17, 1, 19, 27, 39oppcco 17760 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔) = (𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦)))
4847oveq1d 7446 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓))
4934oveq2d 7447 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
5046, 48, 493eqtr4d 2787 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)))
514, 5, 6, 8, 9, 16, 26, 33, 38, 50iscatd2 17724 . 2 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
522, 11cidfn 17722 . . . . 5 (𝐶 ∈ Cat → (Id‘𝐶) Fn (Base‘𝐶))
53 dffn5 6967 . . . . 5 ((Id‘𝐶) Fn (Base‘𝐶) ↔ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5452, 53sylib 218 . . . 4 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5554eqeq2d 2748 . . 3 (𝐶 ∈ Cat → ((Id‘𝑂) = (Id‘𝐶) ↔ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
5655anbi2d 630 . 2 (𝐶 ∈ Cat → ((𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)) ↔ (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))))
5751, 56mpbird 257 1 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cop 4632  cmpt 5225   Fn wfn 6556  cfv 6561  (class class class)co 7431  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Idccid 17708  oppCatcoppc 17754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-hom 17321  df-cco 17322  df-cat 17711  df-cid 17712  df-oppc 17755
This theorem is referenced by:  oppcid  17764  oppccat  17765
  Copyright terms: Public domain W3C validator