Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccatid Structured version   Visualization version   GIF version

Theorem oppccatid 16984
 Description: Lemma for oppccat 16987. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppccatid (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))

Proof of Theorem oppccatid
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . 5 𝑂 = (oppCat‘𝐶)
2 eqid 2798 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 16983 . . . 4 (Base‘𝐶) = (Base‘𝑂)
43a1i 11 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) = (Base‘𝑂))
5 eqidd 2799 . . 3 (𝐶 ∈ Cat → (Hom ‘𝑂) = (Hom ‘𝑂))
6 eqidd 2799 . . 3 (𝐶 ∈ Cat → (comp‘𝑂) = (comp‘𝑂))
71fvexi 6660 . . . 4 𝑂 ∈ V
87a1i 11 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ V)
9 biid 264 . . 3 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))))
10 eqid 2798 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2798 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
12 simpl 486 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
13 simpr 488 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
142, 10, 11, 12, 13catidcl 16948 . . . 4 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
1510, 1oppchom 16980 . . . 4 (𝑦(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑦)
1614, 15eleqtrrdi 2901 . . 3 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝑂)𝑦))
17 eqid 2798 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
18 simpr1l 1227 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
19 simpr1r 1228 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
202, 17, 1, 18, 19, 19oppcco 16982 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)))
21 simpl 486 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝐶 ∈ Cat)
22 simpr31 1260 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
2310, 1oppchom 16980 . . . . . 6 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
2422, 23eleqtrdi 2900 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
252, 10, 11, 21, 19, 17, 18, 24catrid 16950 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)) = 𝑓)
2620, 25eqtrd 2833 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = 𝑓)
27 simpr2l 1229 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
282, 17, 1, 19, 19, 27oppcco 16982 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔))
29 simpr32 1261 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
3010, 1oppchom 16980 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
3129, 30eleqtrdi 2900 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
322, 10, 11, 21, 27, 17, 19, 31catlid 16949 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔) = 𝑔)
3328, 32eqtrd 2833 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = 𝑔)
342, 17, 1, 18, 19, 27oppcco 16982 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
352, 10, 17, 21, 27, 19, 18, 31, 24catcocl 16951 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) ∈ (𝑧(Hom ‘𝐶)𝑥))
3634, 35eqeltrd 2890 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑧(Hom ‘𝐶)𝑥))
3710, 1oppchom 16980 . . . 4 (𝑥(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑥)
3836, 37eleqtrrdi 2901 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑂)𝑧))
39 simpr2r 1230 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
40 simpr33 1262 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
4110, 1oppchom 16980 . . . . . . 7 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
4240, 41eleqtrdi 2900 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑤(Hom ‘𝐶)𝑧))
432, 10, 17, 21, 39, 27, 19, 42, 31, 18, 24catass 16952 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
442, 17, 1, 18, 27, 39oppcco 16982 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)))
452, 17, 1, 18, 19, 39oppcco 16982 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
4643, 44, 453eqtr4rd 2844 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
472, 17, 1, 19, 27, 39oppcco 16982 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔) = (𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦)))
4847oveq1d 7151 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓))
4934oveq2d 7152 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
5046, 48, 493eqtr4d 2843 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)))
514, 5, 6, 8, 9, 16, 26, 33, 38, 50iscatd2 16947 . 2 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
522, 11cidfn 16945 . . . . 5 (𝐶 ∈ Cat → (Id‘𝐶) Fn (Base‘𝐶))
53 dffn5 6700 . . . . 5 ((Id‘𝐶) Fn (Base‘𝐶) ↔ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5452, 53sylib 221 . . . 4 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5554eqeq2d 2809 . . 3 (𝐶 ∈ Cat → ((Id‘𝑂) = (Id‘𝐶) ↔ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
5655anbi2d 631 . 2 (𝐶 ∈ Cat → ((𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)) ↔ (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))))
5751, 56mpbird 260 1 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ⟨cop 4531   ↦ cmpt 5111   Fn wfn 6320  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  Hom chom 16571  compcco 16572  Catccat 16930  Idccid 16931  oppCatcoppc 16976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-tpos 7878  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-hom 16584  df-cco 16585  df-cat 16934  df-cid 16935  df-oppc 16977 This theorem is referenced by:  oppcid  16986  oppccat  16987
 Copyright terms: Public domain W3C validator