Step | Hyp | Ref
| Expression |
1 | | oppcbas.1 |
. . . . 5
⊢ 𝑂 = (oppCat‘𝐶) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | 1, 2 | oppcbas 17428 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝑂) |
4 | 3 | a1i 11 |
. . 3
⊢ (𝐶 ∈ Cat →
(Base‘𝐶) =
(Base‘𝑂)) |
5 | | eqidd 2739 |
. . 3
⊢ (𝐶 ∈ Cat → (Hom
‘𝑂) = (Hom
‘𝑂)) |
6 | | eqidd 2739 |
. . 3
⊢ (𝐶 ∈ Cat →
(comp‘𝑂) =
(comp‘𝑂)) |
7 | 1 | fvexi 6788 |
. . . 4
⊢ 𝑂 ∈ V |
8 | 7 | a1i 11 |
. . 3
⊢ (𝐶 ∈ Cat → 𝑂 ∈ V) |
9 | | biid 260 |
. . 3
⊢ (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) |
10 | | eqid 2738 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
11 | | eqid 2738 |
. . . . 5
⊢
(Id‘𝐶) =
(Id‘𝐶) |
12 | | simpl 483 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
13 | | simpr 485 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
14 | 2, 10, 11, 12, 13 | catidcl 17391 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦)) |
15 | 10, 1 | oppchom 17425 |
. . . 4
⊢ (𝑦(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑦) |
16 | 14, 15 | eleqtrrdi 2850 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝑂)𝑦)) |
17 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
18 | | simpr1l 1229 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑥 ∈ (Base‘𝐶)) |
19 | | simpr1r 1230 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑦 ∈ (Base‘𝐶)) |
20 | 2, 17, 1, 18, 19, 19 | oppcco 17427 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(〈𝑥, 𝑦〉(comp‘𝑂)𝑦)𝑓) = (𝑓(〈𝑦, 𝑦〉(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦))) |
21 | | simpl 483 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝐶 ∈ Cat) |
22 | | simpr31 1262 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦)) |
23 | 10, 1 | oppchom 17425 |
. . . . . 6
⊢ (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥) |
24 | 22, 23 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
25 | 2, 10, 11, 21, 19, 17, 18, 24 | catrid 17393 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(〈𝑦, 𝑦〉(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)) = 𝑓) |
26 | 20, 25 | eqtrd 2778 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(〈𝑥, 𝑦〉(comp‘𝑂)𝑦)𝑓) = 𝑓) |
27 | | simpr2l 1231 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑧 ∈ (Base‘𝐶)) |
28 | 2, 17, 1, 19, 19, 27 | oppcco 17427 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(〈𝑦, 𝑦〉(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = (((Id‘𝐶)‘𝑦)(〈𝑧, 𝑦〉(comp‘𝐶)𝑦)𝑔)) |
29 | | simpr32 1263 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧)) |
30 | 10, 1 | oppchom 17425 |
. . . . . 6
⊢ (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦) |
31 | 29, 30 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦)) |
32 | 2, 10, 11, 21, 27, 17, 19, 31 | catlid 17392 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(〈𝑧, 𝑦〉(comp‘𝐶)𝑦)𝑔) = 𝑔) |
33 | 28, 32 | eqtrd 2778 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(〈𝑦, 𝑦〉(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = 𝑔) |
34 | 2, 17, 1, 18, 19, 27 | oppcco 17427 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)) |
35 | 2, 10, 17, 21, 27, 19, 18, 31, 24 | catcocl 17394 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔) ∈ (𝑧(Hom ‘𝐶)𝑥)) |
36 | 34, 35 | eqeltrd 2839 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓) ∈ (𝑧(Hom ‘𝐶)𝑥)) |
37 | 10, 1 | oppchom 17425 |
. . . 4
⊢ (𝑥(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑥) |
38 | 36, 37 | eleqtrrdi 2850 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑂)𝑧)) |
39 | | simpr2r 1232 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑤 ∈ (Base‘𝐶)) |
40 | | simpr33 1264 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)) |
41 | 10, 1 | oppchom 17425 |
. . . . . . 7
⊢ (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧) |
42 | 40, 41 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ℎ ∈ (𝑤(Hom ‘𝐶)𝑧)) |
43 | 2, 10, 17, 21, 39, 27, 19, 42, 31, 18, 24 | catass 17395 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)(〈𝑤, 𝑧〉(comp‘𝐶)𝑥)ℎ) = (𝑓(〈𝑤, 𝑦〉(comp‘𝐶)𝑥)(𝑔(〈𝑤, 𝑧〉(comp‘𝐶)𝑦)ℎ))) |
44 | 2, 17, 1, 18, 27, 39 | oppcco 17427 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (ℎ(〈𝑥, 𝑧〉(comp‘𝑂)𝑤)(𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)) = ((𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)(〈𝑤, 𝑧〉(comp‘𝐶)𝑥)ℎ)) |
45 | 2, 17, 1, 18, 19, 39 | oppcco 17427 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(〈𝑤, 𝑧〉(comp‘𝐶)𝑦)ℎ)(〈𝑥, 𝑦〉(comp‘𝑂)𝑤)𝑓) = (𝑓(〈𝑤, 𝑦〉(comp‘𝐶)𝑥)(𝑔(〈𝑤, 𝑧〉(comp‘𝐶)𝑦)ℎ))) |
46 | 43, 44, 45 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(〈𝑤, 𝑧〉(comp‘𝐶)𝑦)ℎ)(〈𝑥, 𝑦〉(comp‘𝑂)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝑂)𝑤)(𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔))) |
47 | 2, 17, 1, 19, 27, 39 | oppcco 17427 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (ℎ(〈𝑦, 𝑧〉(comp‘𝑂)𝑤)𝑔) = (𝑔(〈𝑤, 𝑧〉(comp‘𝐶)𝑦)ℎ)) |
48 | 47 | oveq1d 7290 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((ℎ(〈𝑦, 𝑧〉(comp‘𝑂)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝑂)𝑤)𝑓) = ((𝑔(〈𝑤, 𝑧〉(comp‘𝐶)𝑦)ℎ)(〈𝑥, 𝑦〉(comp‘𝑂)𝑤)𝑓)) |
49 | 34 | oveq2d 7291 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (ℎ(〈𝑥, 𝑧〉(comp‘𝑂)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓)) = (ℎ(〈𝑥, 𝑧〉(comp‘𝑂)𝑤)(𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔))) |
50 | 46, 48, 49 | 3eqtr4d 2788 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((ℎ(〈𝑦, 𝑧〉(comp‘𝑂)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝑂)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝑂)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓))) |
51 | 4, 5, 6, 8, 9, 16,
26, 33, 38, 50 | iscatd2 17390 |
. 2
⊢ (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧
(Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))) |
52 | 2, 11 | cidfn 17388 |
. . . . 5
⊢ (𝐶 ∈ Cat →
(Id‘𝐶) Fn
(Base‘𝐶)) |
53 | | dffn5 6828 |
. . . . 5
⊢
((Id‘𝐶) Fn
(Base‘𝐶) ↔
(Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))) |
54 | 52, 53 | sylib 217 |
. . . 4
⊢ (𝐶 ∈ Cat →
(Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))) |
55 | 54 | eqeq2d 2749 |
. . 3
⊢ (𝐶 ∈ Cat →
((Id‘𝑂) =
(Id‘𝐶) ↔
(Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))) |
56 | 55 | anbi2d 629 |
. 2
⊢ (𝐶 ∈ Cat → ((𝑂 ∈ Cat ∧
(Id‘𝑂) =
(Id‘𝐶)) ↔ (𝑂 ∈ Cat ∧
(Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))) |
57 | 51, 56 | mpbird 256 |
1
⊢ (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧
(Id‘𝑂) =
(Id‘𝐶))) |