MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccatid Structured version   Visualization version   GIF version

Theorem oppccatid 16730
Description: Lemma for oppccat 16733. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppccatid (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))

Proof of Theorem oppccatid
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . 5 𝑂 = (oppCat‘𝐶)
2 eqid 2824 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 16729 . . . 4 (Base‘𝐶) = (Base‘𝑂)
43a1i 11 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) = (Base‘𝑂))
5 eqidd 2825 . . 3 (𝐶 ∈ Cat → (Hom ‘𝑂) = (Hom ‘𝑂))
6 eqidd 2825 . . 3 (𝐶 ∈ Cat → (comp‘𝑂) = (comp‘𝑂))
71fvexi 6446 . . . 4 𝑂 ∈ V
87a1i 11 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ V)
9 biid 253 . . 3 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))))
10 eqid 2824 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2824 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
12 simpl 476 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
13 simpr 479 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
142, 10, 11, 12, 13catidcl 16694 . . . 4 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
1510, 1oppchom 16726 . . . 4 (𝑦(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑦)
1614, 15syl6eleqr 2916 . . 3 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝑂)𝑦))
17 eqid 2824 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
18 simpr1l 1311 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
19 simpr1r 1313 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
202, 17, 1, 18, 19, 19oppcco 16728 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)))
21 simpl 476 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝐶 ∈ Cat)
22 simpr31 1365 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
2310, 1oppchom 16726 . . . . . 6 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
2422, 23syl6eleq 2915 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
252, 10, 11, 21, 19, 17, 18, 24catrid 16696 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)) = 𝑓)
2620, 25eqtrd 2860 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = 𝑓)
27 simpr2l 1315 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
282, 17, 1, 19, 19, 27oppcco 16728 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔))
29 simpr32 1367 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
3010, 1oppchom 16726 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
3129, 30syl6eleq 2915 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
322, 10, 11, 21, 27, 17, 19, 31catlid 16695 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔) = 𝑔)
3328, 32eqtrd 2860 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = 𝑔)
342, 17, 1, 18, 19, 27oppcco 16728 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
352, 10, 17, 21, 27, 19, 18, 31, 24catcocl 16697 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) ∈ (𝑧(Hom ‘𝐶)𝑥))
3634, 35eqeltrd 2905 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑧(Hom ‘𝐶)𝑥))
3710, 1oppchom 16726 . . . 4 (𝑥(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑥)
3836, 37syl6eleqr 2916 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑂)𝑧))
39 simpr2r 1317 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
40 simpr33 1369 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
4110, 1oppchom 16726 . . . . . . 7 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
4240, 41syl6eleq 2915 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑤(Hom ‘𝐶)𝑧))
432, 10, 17, 21, 39, 27, 19, 42, 31, 18, 24catass 16698 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
442, 17, 1, 18, 27, 39oppcco 16728 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)))
452, 17, 1, 18, 19, 39oppcco 16728 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
4643, 44, 453eqtr4rd 2871 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
472, 17, 1, 19, 27, 39oppcco 16728 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔) = (𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦)))
4847oveq1d 6919 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓))
4934oveq2d 6920 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
5046, 48, 493eqtr4d 2870 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)))
514, 5, 6, 8, 9, 16, 26, 33, 38, 50iscatd2 16693 . 2 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
522, 11cidfn 16691 . . . . 5 (𝐶 ∈ Cat → (Id‘𝐶) Fn (Base‘𝐶))
53 dffn5 6487 . . . . 5 ((Id‘𝐶) Fn (Base‘𝐶) ↔ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5452, 53sylib 210 . . . 4 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5554eqeq2d 2834 . . 3 (𝐶 ∈ Cat → ((Id‘𝑂) = (Id‘𝐶) ↔ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
5655anbi2d 624 . 2 (𝐶 ∈ Cat → ((𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)) ↔ (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))))
5751, 56mpbird 249 1 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  Vcvv 3413  cop 4402  cmpt 4951   Fn wfn 6117  cfv 6122  (class class class)co 6904  Basecbs 16221  Hom chom 16315  compcco 16316  Catccat 16676  Idccid 16677  oppCatcoppc 16722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-tpos 7616  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-hom 16328  df-cco 16329  df-cat 16680  df-cid 16681  df-oppc 16723
This theorem is referenced by:  oppcid  16732  oppccat  16733
  Copyright terms: Public domain W3C validator