| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | llytop 23480 | . . . 4
⊢ (𝑗 ∈ Locally
𝑛-Locally 𝐴 →
𝑗 ∈
Top) | 
| 2 |  | llyi 23482 | . . . . . . 7
⊢ ((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴)) | 
| 3 |  | simprr3 1224 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴) | 
| 4 |  | simprl 771 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ 𝑗) | 
| 5 |  | ssidd 4007 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ⊆ 𝑢) | 
| 6 |  | simpl1 1192 | . . . . . . . . . . . 12
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Locally 𝑛-Locally 𝐴) | 
| 7 | 6, 1 | syl 17 | . . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Top) | 
| 8 |  | restopn2 23185 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) | 
| 9 | 7, 4, 8 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) | 
| 10 | 4, 5, 9 | mpbir2and 713 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ (𝑗 ↾t 𝑢)) | 
| 11 |  | simprr2 1223 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑦 ∈ 𝑢) | 
| 12 |  | nlly2i 23484 | . . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴 ∧ 𝑢 ∈ (𝑗 ↾t 𝑢) ∧ 𝑦 ∈ 𝑢) → ∃𝑣 ∈ 𝒫 𝑢∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) | 
| 13 | 3, 10, 11, 12 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ 𝒫 𝑢∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) | 
| 14 |  | restopn2 23185 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑧 ∈ (𝑗 ↾t 𝑢) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢))) | 
| 15 | 7, 4, 14 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑧 ∈ (𝑗 ↾t 𝑢) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢))) | 
| 16 | 15 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗 ↾t 𝑢) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢))) | 
| 17 | 7 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top) | 
| 18 |  | simpr2l 1233 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ 𝑗) | 
| 19 |  | simpr31 1264 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑧) | 
| 20 |  | opnneip 23127 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ Top ∧ 𝑧 ∈ 𝑗 ∧ 𝑦 ∈ 𝑧) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) | 
| 21 | 17, 18, 19, 20 | syl3anc 1373 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) | 
| 22 |  | simpr32 1265 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ⊆ 𝑣) | 
| 23 |  | simpr1 1195 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑢) | 
| 24 | 23 | elpwid 4609 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑢) | 
| 25 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ∈ 𝑗) | 
| 26 |  | elssuni 4937 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ ∪ 𝑗) | 
| 28 | 24, 27 | sstrd 3994 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ ∪ 𝑗) | 
| 29 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑗 =
∪ 𝑗 | 
| 30 | 29 | ssnei2 23124 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑗 ∈ Top ∧ 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) ∧ (𝑧 ⊆ 𝑣 ∧ 𝑣 ⊆ ∪ 𝑗)) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦})) | 
| 31 | 17, 21, 22, 28, 30 | syl22anc 839 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦})) | 
| 32 |  | simprr1 1222 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ⊆ 𝑥) | 
| 33 | 32 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) | 
| 34 | 24, 33 | sstrd 3994 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) | 
| 35 |  | velpw 4605 | . . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) | 
| 36 | 34, 35 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) | 
| 37 | 31, 36 | elind 4200 | . . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)) | 
| 38 |  | restabs 23173 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) | 
| 39 | 17, 24, 25, 38 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) | 
| 40 |  | simpr33 1266 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) | 
| 41 | 39, 40 | eqeltrrd 2842 | . . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗 ↾t 𝑣) ∈ 𝐴) | 
| 42 | 37, 41 | jca 511 | . . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 43 | 42 | 3exp2 1355 | . . . . . . . . . . . . 13
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑣 ∈ 𝒫 𝑢 → ((𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))))) | 
| 44 | 43 | imp 406 | . . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → ((𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) | 
| 45 | 16, 44 | sylbid 240 | . . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗 ↾t 𝑢) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) | 
| 46 | 45 | rexlimdv 3153 | . . . . . . . . . 10
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) | 
| 47 | 46 | expimpd 453 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → ((𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) | 
| 48 | 47 | reximdv2 3164 | . . . . . . . 8
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (∃𝑣 ∈ 𝒫 𝑢∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 49 | 13, 48 | mpd 15 | . . . . . . 7
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) | 
| 50 | 2, 49 | rexlimddv 3161 | . . . . . 6
⊢ ((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) | 
| 51 | 50 | 3expb 1121 | . . . . 5
⊢ ((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
(𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) | 
| 52 | 51 | ralrimivva 3202 | . . . 4
⊢ (𝑗 ∈ Locally
𝑛-Locally 𝐴 →
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) | 
| 53 |  | isnlly 23477 | . . . 4
⊢ (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 54 | 1, 52, 53 | sylanbrc 583 | . . 3
⊢ (𝑗 ∈ Locally
𝑛-Locally 𝐴 →
𝑗 ∈ 𝑛-Locally
𝐴) | 
| 55 | 54 | ssriv 3987 | . 2
⊢ Locally
𝑛-Locally 𝐴 ⊆
𝑛-Locally 𝐴 | 
| 56 |  | nllyrest 23494 | . . . . 5
⊢ ((𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) | 
| 57 | 56 | adantl 481 | . . . 4
⊢
((⊤ ∧ (𝑗
∈ 𝑛-Locally 𝐴
∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) | 
| 58 |  | nllytop 23481 | . . . . . 6
⊢ (𝑗 ∈ 𝑛-Locally 𝐴 → 𝑗 ∈ Top) | 
| 59 | 58 | ssriv 3987 | . . . . 5
⊢
𝑛-Locally 𝐴
⊆ Top | 
| 60 | 59 | a1i 11 | . . . 4
⊢ (⊤
→ 𝑛-Locally 𝐴
⊆ Top) | 
| 61 | 57, 60 | restlly 23491 | . . 3
⊢ (⊤
→ 𝑛-Locally 𝐴
⊆ Locally 𝑛-Locally 𝐴) | 
| 62 | 61 | mptru 1547 | . 2
⊢
𝑛-Locally 𝐴
⊆ Locally 𝑛-Locally 𝐴 | 
| 63 | 55, 62 | eqssi 4000 | 1
⊢ Locally
𝑛-Locally 𝐴 =
𝑛-Locally 𝐴 |