MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Visualization version   GIF version

Theorem nllyidm 23518
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 23516 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴

Proof of Theorem nllyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23501 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ Top)
2 llyi 23503 . . . . . . 7 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))
3 simprr3 1223 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴)
4 simprl 770 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑗)
5 ssidd 4032 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑢)
6 simpl1 1191 . . . . . . . . . . . 12 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Locally 𝑛-Locally 𝐴)
76, 1syl 17 . . . . . . . . . . 11 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 23206 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 583 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 712 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1222 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑦𝑢)
12 nlly2i 23505 . . . . . . . . 9 (((𝑗t 𝑢) ∈ 𝑛-Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1371 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 23206 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
157, 4, 14syl2anc 583 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
1615adantr 480 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
177adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
18 simpr2l 1232 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑗)
19 simpr31 1263 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑧)
20 opnneip 23148 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑧𝑗𝑦𝑧) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
2117, 18, 19, 20syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
22 simpr32 1264 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑣)
23 simpr1 1194 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑢)
2423elpwid 4631 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
254adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
26 elssuni 4961 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑗𝑢 𝑗)
2725, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 𝑗)
2824, 27sstrd 4019 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 𝑗)
29 eqid 2740 . . . . . . . . . . . . . . . . . 18 𝑗 = 𝑗
3029ssnei2 23145 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) ∧ (𝑧𝑣𝑣 𝑗)) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
3117, 21, 22, 28, 30syl22anc 838 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
32 simprr1 1221 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑥)
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
3424, 33sstrd 4019 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
35 velpw 4627 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
3634, 35sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
3731, 36elind 4223 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥))
38 restabs 23194 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3917, 24, 25, 38syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
40 simpr33 1265 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
4139, 40eqeltrrd 2845 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
4237, 41jca 511 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))
43423exp2 1354 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑣 ∈ 𝒫 𝑢 → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))))
4443imp 406 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4516, 44sylbid 240 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4645rexlimdv 3159 . . . . . . . . . 10 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4746expimpd 453 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ((𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4847reximdv2 3170 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
4913, 48mpd 15 . . . . . . 7 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
502, 49rexlimddv 3167 . . . . . 6 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
51503expb 1120 . . . . 5 ((𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
5251ralrimivva 3208 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
53 isnlly 23498 . . . 4 (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
541, 52, 53sylanbrc 582 . . 3 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ 𝑛-Locally 𝐴)
5554ssriv 4012 . 2 Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴
56 nllyrest 23515 . . . . 5 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
5756adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
58 nllytop 23502 . . . . . 6 (𝑗 ∈ 𝑛-Locally 𝐴𝑗 ∈ Top)
5958ssriv 4012 . . . . 5 𝑛-Locally 𝐴 ⊆ Top
6059a1i 11 . . . 4 (⊤ → 𝑛-Locally 𝐴 ⊆ Top)
6157, 60restlly 23512 . . 3 (⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴)
6261mptru 1544 . 2 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴
6355, 62eqssi 4025 1 Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  neicnei 23126  Locally clly 23493  𝑛-Locally cnlly 23494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-nei 23127  df-lly 23495  df-nlly 23496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator