MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Visualization version   GIF version

Theorem nllyidm 23383
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 23381 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴

Proof of Theorem nllyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23366 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ Top)
2 llyi 23368 . . . . . . 7 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))
3 simprr3 1224 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴)
4 simprl 770 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑗)
5 ssidd 3973 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑢)
6 simpl1 1192 . . . . . . . . . . . 12 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Locally 𝑛-Locally 𝐴)
76, 1syl 17 . . . . . . . . . . 11 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 23071 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 584 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 713 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1223 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑦𝑢)
12 nlly2i 23370 . . . . . . . . 9 (((𝑗t 𝑢) ∈ 𝑛-Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1373 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 23071 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
157, 4, 14syl2anc 584 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
1615adantr 480 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
177adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
18 simpr2l 1233 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑗)
19 simpr31 1264 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑧)
20 opnneip 23013 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑧𝑗𝑦𝑧) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
2117, 18, 19, 20syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
22 simpr32 1265 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑣)
23 simpr1 1195 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑢)
2423elpwid 4575 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
254adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
26 elssuni 4904 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑗𝑢 𝑗)
2725, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 𝑗)
2824, 27sstrd 3960 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 𝑗)
29 eqid 2730 . . . . . . . . . . . . . . . . . 18 𝑗 = 𝑗
3029ssnei2 23010 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) ∧ (𝑧𝑣𝑣 𝑗)) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
3117, 21, 22, 28, 30syl22anc 838 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
32 simprr1 1222 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑥)
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
3424, 33sstrd 3960 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
35 velpw 4571 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
3634, 35sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
3731, 36elind 4166 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥))
38 restabs 23059 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3917, 24, 25, 38syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
40 simpr33 1266 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
4139, 40eqeltrrd 2830 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
4237, 41jca 511 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))
43423exp2 1355 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑣 ∈ 𝒫 𝑢 → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))))
4443imp 406 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4516, 44sylbid 240 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4645rexlimdv 3133 . . . . . . . . . 10 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4746expimpd 453 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ((𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4847reximdv2 3144 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
4913, 48mpd 15 . . . . . . 7 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
502, 49rexlimddv 3141 . . . . . 6 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
51503expb 1120 . . . . 5 ((𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
5251ralrimivva 3181 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
53 isnlly 23363 . . . 4 (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
541, 52, 53sylanbrc 583 . . 3 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ 𝑛-Locally 𝐴)
5554ssriv 3953 . 2 Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴
56 nllyrest 23380 . . . . 5 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
5756adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
58 nllytop 23367 . . . . . 6 (𝑗 ∈ 𝑛-Locally 𝐴𝑗 ∈ Top)
5958ssriv 3953 . . . . 5 𝑛-Locally 𝐴 ⊆ Top
6059a1i 11 . . . 4 (⊤ → 𝑛-Locally 𝐴 ⊆ Top)
6157, 60restlly 23377 . . 3 (⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴)
6261mptru 1547 . 2 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴
6355, 62eqssi 3966 1 Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592   cuni 4874  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  neicnei 22991  Locally clly 23358  𝑛-Locally cnlly 23359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-nei 22992  df-lly 23360  df-nlly 23361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator