Step | Hyp | Ref
| Expression |
1 | | llytop 22186 |
. . . 4
⊢ (𝑗 ∈ Locally
𝑛-Locally 𝐴 →
𝑗 ∈
Top) |
2 | | llyi 22188 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴)) |
3 | | simprr3 1220 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴) |
4 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ 𝑗) |
5 | | ssidd 3917 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ⊆ 𝑢) |
6 | | simpl1 1188 |
. . . . . . . . . . . 12
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Locally 𝑛-Locally 𝐴) |
7 | 6, 1 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Top) |
8 | | restopn2 21891 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
9 | 7, 4, 8 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
10 | 4, 5, 9 | mpbir2and 712 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ (𝑗 ↾t 𝑢)) |
11 | | simprr2 1219 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑦 ∈ 𝑢) |
12 | | nlly2i 22190 |
. . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴 ∧ 𝑢 ∈ (𝑗 ↾t 𝑢) ∧ 𝑦 ∈ 𝑢) → ∃𝑣 ∈ 𝒫 𝑢∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
13 | 3, 10, 11, 12 | syl3anc 1368 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ 𝒫 𝑢∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
14 | | restopn2 21891 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑧 ∈ (𝑗 ↾t 𝑢) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢))) |
15 | 7, 4, 14 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑧 ∈ (𝑗 ↾t 𝑢) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢))) |
16 | 15 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗 ↾t 𝑢) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢))) |
17 | 7 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top) |
18 | | simpr2l 1229 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ 𝑗) |
19 | | simpr31 1260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑧) |
20 | | opnneip 21833 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ Top ∧ 𝑧 ∈ 𝑗 ∧ 𝑦 ∈ 𝑧) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) |
21 | 17, 18, 19, 20 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) |
22 | | simpr32 1261 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ⊆ 𝑣) |
23 | | simpr1 1191 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑢) |
24 | 23 | elpwid 4508 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑢) |
25 | 4 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ∈ 𝑗) |
26 | | elssuni 4833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ ∪ 𝑗) |
28 | 24, 27 | sstrd 3904 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ ∪ 𝑗) |
29 | | eqid 2758 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑗 =
∪ 𝑗 |
30 | 29 | ssnei2 21830 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 ∈ Top ∧ 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) ∧ (𝑧 ⊆ 𝑣 ∧ 𝑣 ⊆ ∪ 𝑗)) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦})) |
31 | 17, 21, 22, 28, 30 | syl22anc 837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦})) |
32 | | simprr1 1218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ⊆ 𝑥) |
33 | 32 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) |
34 | 24, 33 | sstrd 3904 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) |
35 | | velpw 4502 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) |
36 | 34, 35 | sylibr 237 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) |
37 | 31, 36 | elind 4101 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)) |
38 | | restabs 21879 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
39 | 17, 24, 25, 38 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
40 | | simpr33 1262 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) |
41 | 39, 40 | eqeltrrd 2853 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗 ↾t 𝑣) ∈ 𝐴) |
42 | 37, 41 | jca 515 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
43 | 42 | 3exp2 1351 |
. . . . . . . . . . . . 13
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑣 ∈ 𝒫 𝑢 → ((𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))))) |
44 | 43 | imp 410 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → ((𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
45 | 16, 44 | sylbid 243 |
. . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗 ↾t 𝑢) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
46 | 45 | rexlimdv 3207 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
47 | 46 | expimpd 457 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → ((𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
48 | 47 | reximdv2 3195 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → (∃𝑣 ∈ 𝒫 𝑢∃𝑧 ∈ (𝑗 ↾t 𝑢)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴)) |
49 | 13, 48 | mpd 15 |
. . . . . . 7
⊢ (((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) |
50 | 2, 49 | rexlimddv 3215 |
. . . . . 6
⊢ ((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) |
51 | 50 | 3expb 1117 |
. . . . 5
⊢ ((𝑗 ∈ Locally
𝑛-Locally 𝐴 ∧
(𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) |
52 | 51 | ralrimivva 3120 |
. . . 4
⊢ (𝑗 ∈ Locally
𝑛-Locally 𝐴 →
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴) |
53 | | isnlly 22183 |
. . . 4
⊢ (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑣) ∈ 𝐴)) |
54 | 1, 52, 53 | sylanbrc 586 |
. . 3
⊢ (𝑗 ∈ Locally
𝑛-Locally 𝐴 →
𝑗 ∈ 𝑛-Locally
𝐴) |
55 | 54 | ssriv 3898 |
. 2
⊢ Locally
𝑛-Locally 𝐴 ⊆
𝑛-Locally 𝐴 |
56 | | nllyrest 22200 |
. . . . 5
⊢ ((𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) |
57 | 56 | adantl 485 |
. . . 4
⊢
((⊤ ∧ (𝑗
∈ 𝑛-Locally 𝐴
∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) |
58 | | nllytop 22187 |
. . . . . 6
⊢ (𝑗 ∈ 𝑛-Locally 𝐴 → 𝑗 ∈ Top) |
59 | 58 | ssriv 3898 |
. . . . 5
⊢
𝑛-Locally 𝐴
⊆ Top |
60 | 59 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝑛-Locally 𝐴
⊆ Top) |
61 | 57, 60 | restlly 22197 |
. . 3
⊢ (⊤
→ 𝑛-Locally 𝐴
⊆ Locally 𝑛-Locally 𝐴) |
62 | 61 | mptru 1545 |
. 2
⊢
𝑛-Locally 𝐴
⊆ Locally 𝑛-Locally 𝐴 |
63 | 55, 62 | eqssi 3910 |
1
⊢ Locally
𝑛-Locally 𝐴 =
𝑛-Locally 𝐴 |