MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Visualization version   GIF version

Theorem nllyidm 23497
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 23495 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴

Proof of Theorem nllyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23480 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ Top)
2 llyi 23482 . . . . . . 7 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))
3 simprr3 1224 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴)
4 simprl 771 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑗)
5 ssidd 4007 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑢)
6 simpl1 1192 . . . . . . . . . . . 12 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Locally 𝑛-Locally 𝐴)
76, 1syl 17 . . . . . . . . . . 11 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 23185 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 584 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 713 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1223 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑦𝑢)
12 nlly2i 23484 . . . . . . . . 9 (((𝑗t 𝑢) ∈ 𝑛-Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1373 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 23185 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
157, 4, 14syl2anc 584 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
1615adantr 480 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
177adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
18 simpr2l 1233 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑗)
19 simpr31 1264 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑧)
20 opnneip 23127 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑧𝑗𝑦𝑧) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
2117, 18, 19, 20syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
22 simpr32 1265 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑣)
23 simpr1 1195 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑢)
2423elpwid 4609 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
254adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
26 elssuni 4937 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑗𝑢 𝑗)
2725, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 𝑗)
2824, 27sstrd 3994 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 𝑗)
29 eqid 2737 . . . . . . . . . . . . . . . . . 18 𝑗 = 𝑗
3029ssnei2 23124 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) ∧ (𝑧𝑣𝑣 𝑗)) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
3117, 21, 22, 28, 30syl22anc 839 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
32 simprr1 1222 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑥)
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
3424, 33sstrd 3994 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
35 velpw 4605 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
3634, 35sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
3731, 36elind 4200 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥))
38 restabs 23173 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3917, 24, 25, 38syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
40 simpr33 1266 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
4139, 40eqeltrrd 2842 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
4237, 41jca 511 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))
43423exp2 1355 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑣 ∈ 𝒫 𝑢 → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))))
4443imp 406 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4516, 44sylbid 240 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4645rexlimdv 3153 . . . . . . . . . 10 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4746expimpd 453 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ((𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4847reximdv2 3164 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
4913, 48mpd 15 . . . . . . 7 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
502, 49rexlimddv 3161 . . . . . 6 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
51503expb 1121 . . . . 5 ((𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
5251ralrimivva 3202 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
53 isnlly 23477 . . . 4 (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
541, 52, 53sylanbrc 583 . . 3 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ 𝑛-Locally 𝐴)
5554ssriv 3987 . 2 Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴
56 nllyrest 23494 . . . . 5 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
5756adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
58 nllytop 23481 . . . . . 6 (𝑗 ∈ 𝑛-Locally 𝐴𝑗 ∈ Top)
5958ssriv 3987 . . . . 5 𝑛-Locally 𝐴 ⊆ Top
6059a1i 11 . . . 4 (⊤ → 𝑛-Locally 𝐴 ⊆ Top)
6157, 60restlly 23491 . . 3 (⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴)
6261mptru 1547 . 2 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴
6355, 62eqssi 4000 1 Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wral 3061  wrex 3070  cin 3950  wss 3951  𝒫 cpw 4600  {csn 4626   cuni 4907  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  neicnei 23105  Locally clly 23472  𝑛-Locally cnlly 23473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-nei 23106  df-lly 23474  df-nlly 23475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator