MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Visualization version   GIF version

Theorem nllyidm 22922
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 22920 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴

Proof of Theorem nllyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 22905 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ Top)
2 llyi 22907 . . . . . . 7 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))
3 simprr3 1223 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴)
4 simprl 769 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑗)
5 ssidd 4001 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑢)
6 simpl1 1191 . . . . . . . . . . . 12 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Locally 𝑛-Locally 𝐴)
76, 1syl 17 . . . . . . . . . . 11 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 22610 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 584 . . . . . . . . . 10 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 711 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1222 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑦𝑢)
12 nlly2i 22909 . . . . . . . . 9 (((𝑗t 𝑢) ∈ 𝑛-Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1371 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 22610 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
157, 4, 14syl2anc 584 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
1615adantr 481 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) ↔ (𝑧𝑗𝑧𝑢)))
177adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
18 simpr2l 1232 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑗)
19 simpr31 1263 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑧)
20 opnneip 22552 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑧𝑗𝑦𝑧) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
2117, 18, 19, 20syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧 ∈ ((nei‘𝑗)‘{𝑦}))
22 simpr32 1264 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑧𝑣)
23 simpr1 1194 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑢)
2423elpwid 4605 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
254adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
26 elssuni 4934 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑗𝑢 𝑗)
2725, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 𝑗)
2824, 27sstrd 3988 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 𝑗)
29 eqid 2731 . . . . . . . . . . . . . . . . . 18 𝑗 = 𝑗
3029ssnei2 22549 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑧 ∈ ((nei‘𝑗)‘{𝑦})) ∧ (𝑧𝑣𝑣 𝑗)) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
3117, 21, 22, 28, 30syl22anc 837 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((nei‘𝑗)‘{𝑦}))
32 simprr1 1221 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → 𝑢𝑥)
3332adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
3424, 33sstrd 3988 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
35 velpw 4601 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
3634, 35sylibr 233 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
3731, 36elind 4190 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥))
38 restabs 22598 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3917, 24, 25, 38syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
40 simpr33 1265 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
4139, 40eqeltrrd 2833 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
4237, 41jca 512 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ (𝑣 ∈ 𝒫 𝑢 ∧ (𝑧𝑗𝑧𝑢) ∧ (𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))
43423exp2 1354 . . . . . . . . . . . . 13 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (𝑣 ∈ 𝒫 𝑢 → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))))
4443imp 407 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → ((𝑧𝑗𝑧𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4516, 44sylbid 239 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (𝑧 ∈ (𝑗t 𝑢) → ((𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴))))
4645rexlimdv 3152 . . . . . . . . . 10 ((((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) ∧ 𝑣 ∈ 𝒫 𝑢) → (∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4746expimpd 454 . . . . . . . . 9 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ((𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝑗t 𝑣) ∈ 𝐴)))
4847reximdv2 3163 . . . . . . . 8 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → (∃𝑣 ∈ 𝒫 𝑢𝑧 ∈ (𝑗t 𝑢)(𝑦𝑧𝑧𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
4913, 48mpd 15 . . . . . . 7 (((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝑛-Locally 𝐴))) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
502, 49rexlimddv 3160 . . . . . 6 ((𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
51503expb 1120 . . . . 5 ((𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
5251ralrimivva 3199 . . . 4 (𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴)
53 isnlly 22902 . . . 4 (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑣) ∈ 𝐴))
541, 52, 53sylanbrc 583 . . 3 (𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ 𝑛-Locally 𝐴)
5554ssriv 3982 . 2 Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴
56 nllyrest 22919 . . . . 5 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
5756adantl 482 . . . 4 ((⊤ ∧ (𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
58 nllytop 22906 . . . . . 6 (𝑗 ∈ 𝑛-Locally 𝐴𝑗 ∈ Top)
5958ssriv 3982 . . . . 5 𝑛-Locally 𝐴 ⊆ Top
6059a1i 11 . . . 4 (⊤ → 𝑛-Locally 𝐴 ⊆ Top)
6157, 60restlly 22916 . . 3 (⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴)
6261mptru 1548 . 2 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴
6355, 62eqssi 3994 1 Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wral 3060  wrex 3069  cin 3943  wss 3944  𝒫 cpw 4596  {csn 4622   cuni 4901  cfv 6532  (class class class)co 7393  t crest 17348  Topctop 22324  neicnei 22530  Locally clly 22897  𝑛-Locally cnlly 22898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-en 8923  df-fin 8926  df-fi 9388  df-rest 17350  df-topgen 17371  df-top 22325  df-topon 22342  df-bases 22378  df-nei 22531  df-lly 22899  df-nlly 22900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator