Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf2 Structured version   Visualization version   GIF version

Theorem cdlemf2 40581
Description: Part of Lemma F in [Crawley] p. 116. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
cdlemf2.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemf2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑈,𝑝,𝑞   𝑊,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem cdlemf2
StepHypRef Expression
1 cdlemf1.l . . . 4 = (le‘𝐾)
2 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
3 cdlemf1.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 40025 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
54adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
6 cdlemf1.j . . . . . . 7 = (join‘𝐾)
71, 6, 2, 3cdlemf1 40580 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴 (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))
8 simpr1r 1232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ¬ 𝑝 𝑊)
9 simpr32 1265 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ¬ 𝑞 𝑊)
10 simpr33 1266 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 (𝑝 𝑞))
11 simplrr 777 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 𝑊)
12 hllat 39381 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1312ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ Lat)
14 simplrl 776 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈𝐴)
15 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1615, 2atbase 39307 . . . . . . . . . . . . . 14 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1714, 16syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 ∈ (Base‘𝐾))
18 simplll 774 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ HL)
19 simpr1l 1231 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑝𝐴)
20 simpr2 1196 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑞𝐴)
2115, 6, 2hlatjcl 39385 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
2218, 19, 20, 21syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝑝 𝑞) ∈ (Base‘𝐾))
2315, 3lhpbase 40017 . . . . . . . . . . . . . 14 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2423ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑊 ∈ (Base‘𝐾))
25 cdlemf2.m . . . . . . . . . . . . . 14 = (meet‘𝐾)
2615, 1, 25latlem12 18476 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 (𝑝 𝑞) ∧ 𝑈 𝑊) ↔ 𝑈 ((𝑝 𝑞) 𝑊)))
2713, 17, 22, 24, 26syl13anc 1374 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((𝑈 (𝑝 𝑞) ∧ 𝑈 𝑊) ↔ 𝑈 ((𝑝 𝑞) 𝑊)))
2810, 11, 27mpbi2and 712 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 ((𝑝 𝑞) 𝑊))
29 hlatl 39378 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3029ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ AtLat)
31 simpll 766 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr31 1264 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑝𝑞)
331, 6, 25, 2, 3lhpat 40062 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴𝑝𝑞)) → ((𝑝 𝑞) 𝑊) ∈ 𝐴)
3431, 19, 8, 20, 32, 33syl122anc 1381 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((𝑝 𝑞) 𝑊) ∈ 𝐴)
351, 2atcmp 39329 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ ((𝑝 𝑞) 𝑊) ∈ 𝐴) → (𝑈 ((𝑝 𝑞) 𝑊) ↔ 𝑈 = ((𝑝 𝑞) 𝑊)))
3630, 14, 34, 35syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝑈 ((𝑝 𝑞) 𝑊) ↔ 𝑈 = ((𝑝 𝑞) 𝑊)))
3728, 36mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 = ((𝑝 𝑞) 𝑊))
388, 9, 37jca31 514 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
39383exp2 1355 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) → (𝑞𝐴 → ((𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))))
40393impia 1117 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑞𝐴 → ((𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))))
4140reximdvai 3151 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (∃𝑞𝐴 (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
427, 41mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
43423expia 1121 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
4443expd 415 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (𝑝𝐴 → (¬ 𝑝 𝑊 → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))))
4544reximdvai 3151 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑝𝐴 ¬ 𝑝 𝑊 → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
465, 45mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  AtLatcal 39282  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by:  cdlemf  40582
  Copyright terms: Public domain W3C validator