Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf2 Structured version   Visualization version   GIF version

Theorem cdlemf2 40544
Description: Part of Lemma F in [Crawley] p. 116. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
cdlemf2.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemf2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑈,𝑝,𝑞   𝑊,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem cdlemf2
StepHypRef Expression
1 cdlemf1.l . . . 4 = (le‘𝐾)
2 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
3 cdlemf1.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 39988 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
54adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
6 cdlemf1.j . . . . . . 7 = (join‘𝐾)
71, 6, 2, 3cdlemf1 40543 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴 (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))
8 simpr1r 1230 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ¬ 𝑝 𝑊)
9 simpr32 1263 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ¬ 𝑞 𝑊)
10 simpr33 1264 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 (𝑝 𝑞))
11 simplrr 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 𝑊)
12 hllat 39344 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1312ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ Lat)
14 simplrl 777 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈𝐴)
15 eqid 2734 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1615, 2atbase 39270 . . . . . . . . . . . . . 14 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1714, 16syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 ∈ (Base‘𝐾))
18 simplll 775 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ HL)
19 simpr1l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑝𝐴)
20 simpr2 1194 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑞𝐴)
2115, 6, 2hlatjcl 39348 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
2218, 19, 20, 21syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝑝 𝑞) ∈ (Base‘𝐾))
2315, 3lhpbase 39980 . . . . . . . . . . . . . 14 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2423ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑊 ∈ (Base‘𝐾))
25 cdlemf2.m . . . . . . . . . . . . . 14 = (meet‘𝐾)
2615, 1, 25latlem12 18523 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 (𝑝 𝑞) ∧ 𝑈 𝑊) ↔ 𝑈 ((𝑝 𝑞) 𝑊)))
2713, 17, 22, 24, 26syl13anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((𝑈 (𝑝 𝑞) ∧ 𝑈 𝑊) ↔ 𝑈 ((𝑝 𝑞) 𝑊)))
2810, 11, 27mpbi2and 712 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 ((𝑝 𝑞) 𝑊))
29 hlatl 39341 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3029ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝐾 ∈ AtLat)
31 simpll 767 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr31 1262 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑝𝑞)
331, 6, 25, 2, 3lhpat 40025 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴𝑝𝑞)) → ((𝑝 𝑞) 𝑊) ∈ 𝐴)
3431, 19, 8, 20, 32, 33syl122anc 1378 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((𝑝 𝑞) 𝑊) ∈ 𝐴)
351, 2atcmp 39292 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ ((𝑝 𝑞) 𝑊) ∈ 𝐴) → (𝑈 ((𝑝 𝑞) 𝑊) ↔ 𝑈 = ((𝑝 𝑞) 𝑊)))
3630, 14, 34, 35syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → (𝑈 ((𝑝 𝑞) 𝑊) ↔ 𝑈 = ((𝑝 𝑞) 𝑊)))
3728, 36mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → 𝑈 = ((𝑝 𝑞) 𝑊))
388, 9, 37jca31 514 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑞𝐴 ∧ (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
39383exp2 1353 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) → (𝑞𝐴 → ((𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))))
40393impia 1116 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑞𝐴 → ((𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))))
4140reximdvai 3162 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (∃𝑞𝐴 (𝑝𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑝 𝑞)) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
427, 41mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
43423expia 1120 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
4443expd 415 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (𝑝𝐴 → (¬ 𝑝 𝑊 → ∃𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))))
4544reximdvai 3162 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑝𝐴 ¬ 𝑝 𝑊 → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊))))
465, 45mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝 𝑞) 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  Latclat 18488  Atomscatm 39244  AtLatcal 39245  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-lhyp 39970
This theorem is referenced by:  cdlemf  40545
  Copyright terms: Public domain W3C validator