Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → 𝑥 ⊆ (unifTop‘𝑈)) |
2 | | utopval 22977 |
. . . . . . . . 9
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑎}) |
3 | | ssrab2 3967 |
. . . . . . . . 9
⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑎} ⊆ 𝒫 𝑋 |
4 | 2, 3 | eqsstrdi 3929 |
. . . . . . . 8
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋) |
5 | 4 | adantr 484 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → (unifTop‘𝑈) ⊆ 𝒫 𝑋) |
6 | 1, 5 | sstrd 3885 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → 𝑥 ⊆ 𝒫 𝑋) |
7 | | sspwuni 4982 |
. . . . . 6
⊢ (𝑥 ⊆ 𝒫 𝑋 ↔ ∪ 𝑥
⊆ 𝑋) |
8 | 6, 7 | sylib 221 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → ∪ 𝑥 ⊆ 𝑋) |
9 | | simp-4l 783 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → 𝑈 ∈ (UnifOn‘𝑋)) |
10 | | simp-4r 784 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → 𝑥 ⊆ (unifTop‘𝑈)) |
11 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → 𝑦 ∈ 𝑥) |
12 | 10, 11 | sseldd 3876 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → 𝑦 ∈ (unifTop‘𝑈)) |
13 | | simpr 488 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → 𝑝 ∈ 𝑦) |
14 | | elutop 22978 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑦 ∈ (unifTop‘𝑈) ↔ (𝑦 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑦 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦))) |
15 | 14 | biimpa 480 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑦 ∈ (unifTop‘𝑈)) → (𝑦 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑦 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)) |
16 | 15 | simprd 499 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑦 ∈ (unifTop‘𝑈)) → ∀𝑝 ∈ 𝑦 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦) |
17 | 16 | r19.21bi 3120 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ 𝑦) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦) |
18 | 9, 12, 13, 17 | syl21anc 837 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦) |
19 | | r19.41v 3250 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
𝑈 ((𝑣 “ {𝑝}) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥) ↔ (∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥)) |
20 | | ssuni 4820 |
. . . . . . . . . 10
⊢ (((𝑣 “ {𝑝}) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥) → (𝑣 “ {𝑝}) ⊆ ∪ 𝑥) |
21 | 20 | reximi 3156 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
𝑈 ((𝑣 “ {𝑝}) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥) |
22 | 19, 21 | sylbir 238 |
. . . . . . . 8
⊢
((∃𝑣 ∈
𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥) |
23 | 18, 11, 22 | syl2anc 587 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑥 ⊆
(unifTop‘𝑈)) ∧
𝑝 ∈ ∪ 𝑥)
∧ 𝑦 ∈ 𝑥) ∧ 𝑝 ∈ 𝑦) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥) |
24 | | eluni2 4797 |
. . . . . . . . 9
⊢ (𝑝 ∈ ∪ 𝑥
↔ ∃𝑦 ∈
𝑥 𝑝 ∈ 𝑦) |
25 | 24 | biimpi 219 |
. . . . . . . 8
⊢ (𝑝 ∈ ∪ 𝑥
→ ∃𝑦 ∈
𝑥 𝑝 ∈ 𝑦) |
26 | 25 | adantl 485 |
. . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 ∈ ∪ 𝑥) → ∃𝑦 ∈ 𝑥 𝑝 ∈ 𝑦) |
27 | 23, 26 | r19.29a 3198 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 ∈ ∪ 𝑥) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥) |
28 | 27 | ralrimiva 3096 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → ∀𝑝 ∈ ∪ 𝑥∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥) |
29 | | elutop 22978 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∪ 𝑥
∈ (unifTop‘𝑈)
↔ (∪ 𝑥 ⊆ 𝑋 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥))) |
30 | 29 | adantr 484 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → (∪
𝑥 ∈
(unifTop‘𝑈) ↔
(∪ 𝑥 ⊆ 𝑋 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ ∪ 𝑥))) |
31 | 8, 28, 30 | mpbir2and 713 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → ∪ 𝑥 ∈ (unifTop‘𝑈)) |
32 | 31 | ex 416 |
. . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑥 ⊆ (unifTop‘𝑈) → ∪ 𝑥 ∈ (unifTop‘𝑈))) |
33 | 32 | alrimiv 1933 |
. 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥(𝑥 ⊆ (unifTop‘𝑈) → ∪ 𝑥 ∈ (unifTop‘𝑈))) |
34 | | elutop 22978 |
. . . . . . . 8
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑥 ∈ (unifTop‘𝑈) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑥 ∃𝑢 ∈ 𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥))) |
35 | 34 | biimpa 480 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) → (𝑥 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑥 ∃𝑢 ∈ 𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥)) |
36 | 35 | simpld 498 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) → 𝑥 ⊆ 𝑋) |
37 | 36 | adantrr 717 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → 𝑥 ⊆ 𝑋) |
38 | | ssinss1 4126 |
. . . . 5
⊢ (𝑥 ⊆ 𝑋 → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
40 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → 𝑈 ∈ (UnifOn‘𝑋)) |
41 | | simpr31 1264 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → 𝑢 ∈ 𝑈) |
42 | | simpr32 1265 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → 𝑣 ∈ 𝑈) |
43 | | ustincl 22952 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈) → (𝑢 ∩ 𝑣) ∈ 𝑈) |
44 | 40, 41, 42, 43 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → (𝑢 ∩ 𝑣) ∈ 𝑈) |
45 | | inss1 4117 |
. . . . . . . . . . . 12
⊢ (𝑢 ∩ 𝑣) ⊆ 𝑢 |
46 | | imass1 5932 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑣) ⊆ 𝑢 → ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑢 “ {𝑝})) |
47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑢 “ {𝑝}) |
48 | | simpr33 1266 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)) |
49 | 48 | simpld 498 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → (𝑢 “ {𝑝}) ⊆ 𝑥) |
50 | 47, 49 | sstrid 3886 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ 𝑥) |
51 | | inss2 4118 |
. . . . . . . . . . . 12
⊢ (𝑢 ∩ 𝑣) ⊆ 𝑣 |
52 | | imass1 5932 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑣) ⊆ 𝑣 → ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑣 “ {𝑝})) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑣 “ {𝑝}) |
54 | 48 | simprd 499 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → (𝑣 “ {𝑝}) ⊆ 𝑦) |
55 | 53, 54 | sstrid 3886 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ 𝑦) |
56 | 50, 55 | ssind 4121 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
57 | | imaeq1 5892 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑢 ∩ 𝑣) → (𝑤 “ {𝑝}) = ((𝑢 ∩ 𝑣) “ {𝑝})) |
58 | 57 | sseq1d 3906 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑢 ∩ 𝑣) → ((𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦) ↔ ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑥 ∩ 𝑦))) |
59 | 58 | rspcev 3524 |
. . . . . . . . 9
⊢ (((𝑢 ∩ 𝑣) ∈ 𝑈 ∧ ((𝑢 ∩ 𝑣) “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
60 | 44, 56, 59 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
61 | 60 | 3anassrs 1361 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦))) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
62 | 61 | 3anassrs 1361 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
(𝑥 ∈
(unifTop‘𝑈) ∧
𝑦 ∈
(unifTop‘𝑈))) ∧
𝑝 ∈ (𝑥 ∩ 𝑦)) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
63 | | simpll 767 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → 𝑈 ∈ (UnifOn‘𝑋)) |
64 | | simplrl 777 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → 𝑥 ∈ (unifTop‘𝑈)) |
65 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → 𝑝 ∈ (𝑥 ∩ 𝑦)) |
66 | | elin 3857 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (𝑥 ∩ 𝑦) ↔ (𝑝 ∈ 𝑥 ∧ 𝑝 ∈ 𝑦)) |
67 | 65, 66 | sylib 221 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → (𝑝 ∈ 𝑥 ∧ 𝑝 ∈ 𝑦)) |
68 | 67 | simpld 498 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → 𝑝 ∈ 𝑥) |
69 | 35 | simprd 499 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) → ∀𝑝 ∈ 𝑥 ∃𝑢 ∈ 𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥) |
70 | 69 | r19.21bi 3120 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ 𝑥) → ∃𝑢 ∈ 𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥) |
71 | 63, 64, 68, 70 | syl21anc 837 |
. . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → ∃𝑢 ∈ 𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥) |
72 | | simplrr 778 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → 𝑦 ∈ (unifTop‘𝑈)) |
73 | 67 | simprd 499 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → 𝑝 ∈ 𝑦) |
74 | 63, 72, 73, 17 | syl21anc 837 |
. . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦) |
75 | | reeanv 3269 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝑈 ∃𝑣 ∈ 𝑈 ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦) ↔ (∃𝑢 ∈ 𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥 ∧ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)) |
76 | 71, 74, 75 | sylanbrc 586 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → ∃𝑢 ∈ 𝑈 ∃𝑣 ∈ 𝑈 ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)) |
77 | 62, 76 | r19.29vva 3242 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
78 | 77 | ralrimiva 3096 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → ∀𝑝 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)) |
79 | | elutop 22978 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((𝑥 ∩ 𝑦) ∈ (unifTop‘𝑈) ↔ ((𝑥 ∩ 𝑦) ⊆ 𝑋 ∧ ∀𝑝 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)))) |
80 | 79 | adantr 484 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → ((𝑥 ∩ 𝑦) ∈ (unifTop‘𝑈) ↔ ((𝑥 ∩ 𝑦) ⊆ 𝑋 ∧ ∀𝑝 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥 ∩ 𝑦)))) |
81 | 39, 78, 80 | mpbir2and 713 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → (𝑥 ∩ 𝑦) ∈ (unifTop‘𝑈)) |
82 | 81 | ralrimivva 3103 |
. 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥 ∈ (unifTop‘𝑈)∀𝑦 ∈ (unifTop‘𝑈)(𝑥 ∩ 𝑦) ∈ (unifTop‘𝑈)) |
83 | | fvex 6681 |
. . 3
⊢
(unifTop‘𝑈)
∈ V |
84 | | istopg 21639 |
. . 3
⊢
((unifTop‘𝑈)
∈ V → ((unifTop‘𝑈) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (unifTop‘𝑈) → ∪ 𝑥 ∈ (unifTop‘𝑈)) ∧ ∀𝑥 ∈ (unifTop‘𝑈)∀𝑦 ∈ (unifTop‘𝑈)(𝑥 ∩ 𝑦) ∈ (unifTop‘𝑈)))) |
85 | 83, 84 | ax-mp 5 |
. 2
⊢
((unifTop‘𝑈)
∈ Top ↔ (∀𝑥(𝑥 ⊆ (unifTop‘𝑈) → ∪ 𝑥 ∈ (unifTop‘𝑈)) ∧ ∀𝑥 ∈ (unifTop‘𝑈)∀𝑦 ∈ (unifTop‘𝑈)(𝑥 ∩ 𝑦) ∈ (unifTop‘𝑈))) |
86 | 33, 82, 85 | sylanbrc 586 |
1
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) |