MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utoptop Structured version   Visualization version   GIF version

Theorem utoptop 22840
Description: The topology induced by a uniform structure 𝑈 is a topology. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
utoptop (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)

Proof of Theorem utoptop
Dummy variables 𝑝 𝑎 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → 𝑥 ⊆ (unifTop‘𝑈))
2 utopval 22838 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑎})
3 ssrab2 4007 . . . . . . . . 9 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑎} ⊆ 𝒫 𝑋
42, 3eqsstrdi 3969 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋)
54adantr 484 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → (unifTop‘𝑈) ⊆ 𝒫 𝑋)
61, 5sstrd 3925 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → 𝑥 ⊆ 𝒫 𝑋)
7 sspwuni 4985 . . . . . 6 (𝑥 ⊆ 𝒫 𝑋 𝑥𝑋)
86, 7sylib 221 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → 𝑥𝑋)
9 simp-4l 782 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → 𝑈 ∈ (UnifOn‘𝑋))
10 simp-4r 783 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → 𝑥 ⊆ (unifTop‘𝑈))
11 simplr 768 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → 𝑦𝑥)
1210, 11sseldd 3916 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → 𝑦 ∈ (unifTop‘𝑈))
13 simpr 488 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → 𝑝𝑦)
14 elutop 22839 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → (𝑦 ∈ (unifTop‘𝑈) ↔ (𝑦𝑋 ∧ ∀𝑝𝑦𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)))
1514biimpa 480 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑦 ∈ (unifTop‘𝑈)) → (𝑦𝑋 ∧ ∀𝑝𝑦𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦))
1615simprd 499 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑦 ∈ (unifTop‘𝑈)) → ∀𝑝𝑦𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)
1716r19.21bi 3173 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝𝑦) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)
189, 12, 13, 17syl21anc 836 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)
19 r19.41v 3300 . . . . . . . . 9 (∃𝑣𝑈 ((𝑣 “ {𝑝}) ⊆ 𝑦𝑦𝑥) ↔ (∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦𝑦𝑥))
20 ssuni 4825 . . . . . . . . . 10 (((𝑣 “ {𝑝}) ⊆ 𝑦𝑦𝑥) → (𝑣 “ {𝑝}) ⊆ 𝑥)
2120reximi 3206 . . . . . . . . 9 (∃𝑣𝑈 ((𝑣 “ {𝑝}) ⊆ 𝑦𝑦𝑥) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)
2219, 21sylbir 238 . . . . . . . 8 ((∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦𝑦𝑥) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)
2318, 11, 22syl2anc 587 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) ∧ 𝑦𝑥) ∧ 𝑝𝑦) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)
24 eluni2 4804 . . . . . . . . 9 (𝑝 𝑥 ↔ ∃𝑦𝑥 𝑝𝑦)
2524biimpi 219 . . . . . . . 8 (𝑝 𝑥 → ∃𝑦𝑥 𝑝𝑦)
2625adantl 485 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) → ∃𝑦𝑥 𝑝𝑦)
2723, 26r19.29a 3248 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) ∧ 𝑝 𝑥) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)
2827ralrimiva 3149 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → ∀𝑝 𝑥𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)
29 elutop 22839 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝑥 ∈ (unifTop‘𝑈) ↔ ( 𝑥𝑋 ∧ ∀𝑝 𝑥𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)))
3029adantr 484 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → ( 𝑥 ∈ (unifTop‘𝑈) ↔ ( 𝑥𝑋 ∧ ∀𝑝 𝑥𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑥)))
318, 28, 30mpbir2and 712 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ⊆ (unifTop‘𝑈)) → 𝑥 ∈ (unifTop‘𝑈))
3231ex 416 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑥 ⊆ (unifTop‘𝑈) → 𝑥 ∈ (unifTop‘𝑈)))
3332alrimiv 1928 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥(𝑥 ⊆ (unifTop‘𝑈) → 𝑥 ∈ (unifTop‘𝑈)))
34 elutop 22839 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (𝑥 ∈ (unifTop‘𝑈) ↔ (𝑥𝑋 ∧ ∀𝑝𝑥𝑢𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥)))
3534biimpa 480 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) → (𝑥𝑋 ∧ ∀𝑝𝑥𝑢𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥))
3635simpld 498 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) → 𝑥𝑋)
3736adantrr 716 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → 𝑥𝑋)
38 ssinss1 4164 . . . . 5 (𝑥𝑋 → (𝑥𝑦) ⊆ 𝑋)
3937, 38syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → (𝑥𝑦) ⊆ 𝑋)
40 simpl 486 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → 𝑈 ∈ (UnifOn‘𝑋))
41 simpr31 1260 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → 𝑢𝑈)
42 simpr32 1261 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → 𝑣𝑈)
43 ustincl 22813 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈𝑣𝑈) → (𝑢𝑣) ∈ 𝑈)
4440, 41, 42, 43syl3anc 1368 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → (𝑢𝑣) ∈ 𝑈)
45 inss1 4155 . . . . . . . . . . . 12 (𝑢𝑣) ⊆ 𝑢
46 imass1 5931 . . . . . . . . . . . 12 ((𝑢𝑣) ⊆ 𝑢 → ((𝑢𝑣) “ {𝑝}) ⊆ (𝑢 “ {𝑝}))
4745, 46ax-mp 5 . . . . . . . . . . 11 ((𝑢𝑣) “ {𝑝}) ⊆ (𝑢 “ {𝑝})
48 simpr33 1262 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦))
4948simpld 498 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → (𝑢 “ {𝑝}) ⊆ 𝑥)
5047, 49sstrid 3926 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢𝑣) “ {𝑝}) ⊆ 𝑥)
51 inss2 4156 . . . . . . . . . . . 12 (𝑢𝑣) ⊆ 𝑣
52 imass1 5931 . . . . . . . . . . . 12 ((𝑢𝑣) ⊆ 𝑣 → ((𝑢𝑣) “ {𝑝}) ⊆ (𝑣 “ {𝑝}))
5351, 52ax-mp 5 . . . . . . . . . . 11 ((𝑢𝑣) “ {𝑝}) ⊆ (𝑣 “ {𝑝})
5448simprd 499 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → (𝑣 “ {𝑝}) ⊆ 𝑦)
5553, 54sstrid 3926 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢𝑣) “ {𝑝}) ⊆ 𝑦)
5650, 55ssind 4159 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ((𝑢𝑣) “ {𝑝}) ⊆ (𝑥𝑦))
57 imaeq1 5891 . . . . . . . . . . 11 (𝑤 = (𝑢𝑣) → (𝑤 “ {𝑝}) = ((𝑢𝑣) “ {𝑝}))
5857sseq1d 3946 . . . . . . . . . 10 (𝑤 = (𝑢𝑣) → ((𝑤 “ {𝑝}) ⊆ (𝑥𝑦) ↔ ((𝑢𝑣) “ {𝑝}) ⊆ (𝑥𝑦)))
5958rspcev 3571 . . . . . . . . 9 (((𝑢𝑣) ∈ 𝑈 ∧ ((𝑢𝑣) “ {𝑝}) ⊆ (𝑥𝑦)) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))
6044, 56, 59syl2anc 587 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ ((𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈)) ∧ 𝑝 ∈ (𝑥𝑦) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)))) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))
61603anassrs 1357 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) ∧ (𝑢𝑈𝑣𝑈 ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦))) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))
62613anassrs 1357 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) ∧ 𝑢𝑈) ∧ 𝑣𝑈) ∧ ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦)) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))
63 simpll 766 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → 𝑈 ∈ (UnifOn‘𝑋))
64 simplrl 776 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → 𝑥 ∈ (unifTop‘𝑈))
65 simpr 488 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → 𝑝 ∈ (𝑥𝑦))
66 elin 3897 . . . . . . . . . 10 (𝑝 ∈ (𝑥𝑦) ↔ (𝑝𝑥𝑝𝑦))
6765, 66sylib 221 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → (𝑝𝑥𝑝𝑦))
6867simpld 498 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → 𝑝𝑥)
6935simprd 499 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) → ∀𝑝𝑥𝑢𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥)
7069r19.21bi 3173 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ (unifTop‘𝑈)) ∧ 𝑝𝑥) → ∃𝑢𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥)
7163, 64, 68, 70syl21anc 836 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → ∃𝑢𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥)
72 simplrr 777 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → 𝑦 ∈ (unifTop‘𝑈))
7367simprd 499 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → 𝑝𝑦)
7463, 72, 73, 17syl21anc 836 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦)
75 reeanv 3320 . . . . . . 7 (∃𝑢𝑈𝑣𝑈 ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦) ↔ (∃𝑢𝑈 (𝑢 “ {𝑝}) ⊆ 𝑥 ∧ ∃𝑣𝑈 (𝑣 “ {𝑝}) ⊆ 𝑦))
7671, 74, 75sylanbrc 586 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → ∃𝑢𝑈𝑣𝑈 ((𝑢 “ {𝑝}) ⊆ 𝑥 ∧ (𝑣 “ {𝑝}) ⊆ 𝑦))
7762, 76r19.29vva 3292 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) ∧ 𝑝 ∈ (𝑥𝑦)) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))
7877ralrimiva 3149 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → ∀𝑝 ∈ (𝑥𝑦)∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))
79 elutop 22839 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ((𝑥𝑦) ∈ (unifTop‘𝑈) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑝 ∈ (𝑥𝑦)∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))))
8079adantr 484 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → ((𝑥𝑦) ∈ (unifTop‘𝑈) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑝 ∈ (𝑥𝑦)∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ (𝑥𝑦))))
8139, 78, 80mpbir2and 712 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑥 ∈ (unifTop‘𝑈) ∧ 𝑦 ∈ (unifTop‘𝑈))) → (𝑥𝑦) ∈ (unifTop‘𝑈))
8281ralrimivva 3156 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥 ∈ (unifTop‘𝑈)∀𝑦 ∈ (unifTop‘𝑈)(𝑥𝑦) ∈ (unifTop‘𝑈))
83 fvex 6658 . . 3 (unifTop‘𝑈) ∈ V
84 istopg 21500 . . 3 ((unifTop‘𝑈) ∈ V → ((unifTop‘𝑈) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (unifTop‘𝑈) → 𝑥 ∈ (unifTop‘𝑈)) ∧ ∀𝑥 ∈ (unifTop‘𝑈)∀𝑦 ∈ (unifTop‘𝑈)(𝑥𝑦) ∈ (unifTop‘𝑈))))
8583, 84ax-mp 5 . 2 ((unifTop‘𝑈) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (unifTop‘𝑈) → 𝑥 ∈ (unifTop‘𝑈)) ∧ ∀𝑥 ∈ (unifTop‘𝑈)∀𝑦 ∈ (unifTop‘𝑈)(𝑥𝑦) ∈ (unifTop‘𝑈)))
8633, 82, 85sylanbrc 586 1 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525   cuni 4800  cima 5522  cfv 6324  Topctop 21498  UnifOncust 22805  unifTopcutop 22836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-top 21499  df-ust 22806  df-utop 22837
This theorem is referenced by:  utoptopon  22842  utop2nei  22856  utop3cls  22857  utopreg  22858
  Copyright terms: Public domain W3C validator