Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd1 Structured version   Visualization version   GIF version

Theorem cdlemd1 40236
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd1.l = (le‘𝐾)
cdlemd1.j = (join‘𝐾)
cdlemd1.m = (meet‘𝐾)
cdlemd1.a 𝐴 = (Atoms‘𝐾)
cdlemd1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemd1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))

Proof of Theorem cdlemd1
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simpr1l 1231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑃𝐴)
3 simpr2l 1233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑄𝐴)
4 simpr31 1264 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅𝐴)
5 simpr32 1265 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑃𝑄)
6 simpr33 1266 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → ¬ 𝑅 (𝑃 𝑄))
7 cdlemd1.l . . . 4 = (le‘𝐾)
8 cdlemd1.j . . . 4 = (join‘𝐾)
9 cdlemd1.m . . . 4 = (meet‘𝐾)
10 cdlemd1.a . . . 4 𝐴 = (Atoms‘𝐾)
117, 8, 9, 102llnma2 39827 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
121, 2, 3, 4, 5, 6, 11syl132anc 1390 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
13 hllat 39401 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝐾 ∈ Lat)
15 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1615, 10atbase 39327 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
174, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 ∈ (Base‘𝐾))
1815, 10atbase 39327 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑃 ∈ (Base‘𝐾))
2015, 8latjcom 18350 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑅 𝑃) = (𝑃 𝑅))
2114, 17, 19, 20syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑃) = (𝑃 𝑅))
22 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simpr1 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
24 cdlemd1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2515, 7, 8, 9, 10, 24cdlemc1 40229 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
2622, 17, 23, 25syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑃 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
2721, 26eqtr4d 2769 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑃) = (𝑃 ((𝑃 𝑅) 𝑊)))
2815, 10atbase 39327 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
293, 28syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑄 ∈ (Base‘𝐾))
3015, 8latjcom 18350 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑅 𝑄) = (𝑄 𝑅))
3114, 17, 29, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑄) = (𝑄 𝑅))
32 simpr2 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3315, 7, 8, 9, 10, 24cdlemc1 40229 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 ((𝑄 𝑅) 𝑊)) = (𝑄 𝑅))
3422, 17, 32, 33syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑄 ((𝑄 𝑅) 𝑊)) = (𝑄 𝑅))
3531, 34eqtr4d 2769 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑄) = (𝑄 ((𝑄 𝑅) 𝑊)))
3627, 35oveq12d 7364 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → ((𝑅 𝑃) (𝑅 𝑄)) = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))
3712, 36eqtr3d 2768 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  meetcmee 18215  Latclat 18334  Atomscatm 39301  HLchlt 39388  LHypclh 40022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026
This theorem is referenced by:  cdlemd2  40237
  Copyright terms: Public domain W3C validator