Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd1 Structured version   Visualization version   GIF version

Theorem cdlemd1 39703
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd1.l ≀ = (leβ€˜πΎ)
cdlemd1.j ∨ = (joinβ€˜πΎ)
cdlemd1.m ∧ = (meetβ€˜πΎ)
cdlemd1.a 𝐴 = (Atomsβ€˜πΎ)
cdlemd1.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdlemd1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 = ((𝑃 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∧ (𝑄 ∨ ((𝑄 ∨ 𝑅) ∧ π‘Š))))

Proof of Theorem cdlemd1
StepHypRef Expression
1 simpll 765 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝐾 ∈ HL)
2 simpr1l 1227 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 ∈ 𝐴)
3 simpr2l 1229 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑄 ∈ 𝐴)
4 simpr31 1260 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 ∈ 𝐴)
5 simpr32 1261 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 β‰  𝑄)
6 simpr33 1262 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
7 cdlemd1.l . . . 4 ≀ = (leβ€˜πΎ)
8 cdlemd1.j . . . 4 ∨ = (joinβ€˜πΎ)
9 cdlemd1.m . . . 4 ∧ = (meetβ€˜πΎ)
10 cdlemd1.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
117, 8, 9, 102llnma2 39294 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅)
121, 2, 3, 4, 5, 6, 11syl132anc 1385 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅)
13 hllat 38867 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
1413ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝐾 ∈ Lat)
15 eqid 2728 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1615, 10atbase 38793 . . . . . 6 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
174, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
1815, 10atbase 38793 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2015, 8latjcom 18446 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ 𝑃) = (𝑃 ∨ 𝑅))
2114, 17, 19, 20syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑅 ∨ 𝑃) = (𝑃 ∨ 𝑅))
22 simpl 481 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
23 simpr1 1191 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
24 cdlemd1.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
2515, 7, 8, 9, 10, 24cdlemc1 39696 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = (𝑃 ∨ 𝑅))
2622, 17, 23, 25syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = (𝑃 ∨ 𝑅))
2721, 26eqtr4d 2771 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑅 ∨ 𝑃) = (𝑃 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
2815, 10atbase 38793 . . . . . 6 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
293, 28syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3015, 8latjcom 18446 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ 𝑄) = (𝑄 ∨ 𝑅))
3114, 17, 29, 30syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑅 ∨ 𝑄) = (𝑄 ∨ 𝑅))
32 simpr2 1192 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
3315, 7, 8, 9, 10, 24cdlemc1 39696 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑄 ∨ ((𝑄 ∨ 𝑅) ∧ π‘Š)) = (𝑄 ∨ 𝑅))
3422, 17, 32, 33syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑄 ∨ ((𝑄 ∨ 𝑅) ∧ π‘Š)) = (𝑄 ∨ 𝑅))
3531, 34eqtr4d 2771 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑅 ∨ 𝑄) = (𝑄 ∨ ((𝑄 ∨ 𝑅) ∧ π‘Š)))
3627, 35oveq12d 7444 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = ((𝑃 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∧ (𝑄 ∨ ((𝑄 ∨ 𝑅) ∧ π‘Š))))
3712, 36eqtr3d 2770 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 = ((𝑃 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∧ (𝑄 ∨ ((𝑄 ∨ 𝑅) ∧ π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  lecple 17247  joincjn 18310  meetcmee 18311  Latclat 18430  Atomscatm 38767  HLchlt 38854  LHypclh 39489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493
This theorem is referenced by:  cdlemd2  39704
  Copyright terms: Public domain W3C validator