Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd1 Structured version   Visualization version   GIF version

Theorem cdlemd1 40155
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd1.l = (le‘𝐾)
cdlemd1.j = (join‘𝐾)
cdlemd1.m = (meet‘𝐾)
cdlemd1.a 𝐴 = (Atoms‘𝐾)
cdlemd1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemd1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))

Proof of Theorem cdlemd1
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simpr1l 1230 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑃𝐴)
3 simpr2l 1232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑄𝐴)
4 simpr31 1263 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅𝐴)
5 simpr32 1264 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑃𝑄)
6 simpr33 1265 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → ¬ 𝑅 (𝑃 𝑄))
7 cdlemd1.l . . . 4 = (le‘𝐾)
8 cdlemd1.j . . . 4 = (join‘𝐾)
9 cdlemd1.m . . . 4 = (meet‘𝐾)
10 cdlemd1.a . . . 4 𝐴 = (Atoms‘𝐾)
117, 8, 9, 102llnma2 39746 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
121, 2, 3, 4, 5, 6, 11syl132anc 1388 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → ((𝑅 𝑃) (𝑅 𝑄)) = 𝑅)
13 hllat 39319 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝐾 ∈ Lat)
15 eqid 2740 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1615, 10atbase 39245 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
174, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 ∈ (Base‘𝐾))
1815, 10atbase 39245 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑃 ∈ (Base‘𝐾))
2015, 8latjcom 18517 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑅 𝑃) = (𝑃 𝑅))
2114, 17, 19, 20syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑃) = (𝑃 𝑅))
22 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simpr1 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
24 cdlemd1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2515, 7, 8, 9, 10, 24cdlemc1 40148 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
2622, 17, 23, 25syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑃 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
2721, 26eqtr4d 2783 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑃) = (𝑃 ((𝑃 𝑅) 𝑊)))
2815, 10atbase 39245 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
293, 28syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑄 ∈ (Base‘𝐾))
3015, 8latjcom 18517 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑅 𝑄) = (𝑄 𝑅))
3114, 17, 29, 30syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑄) = (𝑄 𝑅))
32 simpr2 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3315, 7, 8, 9, 10, 24cdlemc1 40148 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 ((𝑄 𝑅) 𝑊)) = (𝑄 𝑅))
3422, 17, 32, 33syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑄 ((𝑄 𝑅) 𝑊)) = (𝑄 𝑅))
3531, 34eqtr4d 2783 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → (𝑅 𝑄) = (𝑄 ((𝑄 𝑅) 𝑊)))
3627, 35oveq12d 7466 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → ((𝑅 𝑃) (𝑅 𝑄)) = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))
3712, 36eqtr3d 2782 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945
This theorem is referenced by:  cdlemd2  40156
  Copyright terms: Public domain W3C validator