Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Structured version   Visualization version   GIF version

Theorem cdleme1 39086
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r ∨ f(r) = r ∨ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l ≀ = (leβ€˜πΎ)
cdleme1.j ∨ = (joinβ€˜πΎ)
cdleme1.m ∧ = (meetβ€˜πΎ)
cdleme1.a 𝐴 = (Atomsβ€˜πΎ)
cdleme1.h 𝐻 = (LHypβ€˜πΎ)
cdleme1.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme1.f 𝐹 = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
Assertion
Ref Expression
cdleme1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ 𝐹) = (𝑅 ∨ π‘ˆ))

Proof of Theorem cdleme1
StepHypRef Expression
1 cdleme1.f . . 3 𝐹 = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
21oveq2i 7416 . 2 (𝑅 ∨ 𝐹) = (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
3 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
4 simpr3l 1234 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ∈ 𝐴)
5 hllat 38221 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
65ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝐾 ∈ Lat)
7 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
8 cdleme1.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
97, 8atbase 38147 . . . . . 6 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
104, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
11 cdleme1.u . . . . . 6 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
12 simpr1 1194 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
137, 8atbase 38147 . . . . . . . . 9 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1412, 13syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
15 simpr2 1195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑄 ∈ 𝐴)
167, 8atbase 38147 . . . . . . . . 9 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1715, 16syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
18 cdleme1.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
197, 18latjcl 18388 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
206, 14, 17, 19syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
21 cdleme1.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
227, 21lhpbase 38857 . . . . . . . 8 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2322ad2antlr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
24 cdleme1.m . . . . . . . 8 ∧ = (meetβ€˜πΎ)
257, 24latmcl 18389 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
266, 20, 23, 25syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
2711, 26eqeltrid 2837 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
287, 18latjcl 18388 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
296, 10, 27, 28syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
307, 18latjcl 18388 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
316, 14, 10, 30syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
327, 24latmcl 18389 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
336, 31, 23, 32syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
347, 18latjcl 18388 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
356, 17, 33, 34syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
36 cdleme1.l . . . . . 6 ≀ = (leβ€˜πΎ)
377, 36, 18latlej1 18397 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ 𝑅 ≀ (𝑅 ∨ π‘ˆ))
386, 10, 27, 37syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ≀ (𝑅 ∨ π‘ˆ))
397, 36, 18, 24, 8atmod3i1 38723 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑅 ∨ π‘ˆ)) β†’ (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
403, 4, 29, 35, 38, 39syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
417, 36, 18latlej2 18398 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ 𝑅 ≀ (𝑃 ∨ 𝑅))
426, 14, 10, 41syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑅))
437, 36, 18, 24, 8atmod3i1 38723 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑅)) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ π‘Š)))
443, 4, 31, 23, 42, 43syl131anc 1383 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ π‘Š)))
45 eqid 2732 . . . . . . . . . 10 (1.β€˜πΎ) = (1.β€˜πΎ)
4636, 18, 45, 8, 21lhpjat2 38880 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
47463ad2antr3 1190 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
4847oveq2d 7421 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ π‘Š)) = ((𝑃 ∨ 𝑅) ∧ (1.β€˜πΎ)))
49 hlol 38219 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
5049ad2antrr 724 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝐾 ∈ OL)
517, 24, 45olm11 38085 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑅) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑅))
5250, 31, 51syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑅) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑅))
5344, 48, 523eqtrd 2776 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = (𝑃 ∨ 𝑅))
5453oveq2d 7421 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = (𝑄 ∨ (𝑃 ∨ 𝑅)))
557, 18latj12 18433 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
566, 17, 10, 33, 55syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
577, 18latj13 18435 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ))) β†’ (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄)))
586, 17, 14, 10, 57syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄)))
5954, 56, 583eqtr3rd 2781 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
6059oveq2d 7421 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
6136, 18, 24, 8, 21, 11cdlemeulpq 39079 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
62613adantr3 1171 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
637, 36, 18latjlej2 18403 . . . . . 6 ((𝐾 ∈ Lat ∧ (π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ))) β†’ (π‘ˆ ≀ (𝑃 ∨ 𝑄) β†’ (𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄))))
646, 27, 20, 10, 63syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (π‘ˆ ≀ (𝑃 ∨ 𝑄) β†’ (𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄))))
6562, 64mpd 15 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄)))
667, 18latjcl 18388 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Baseβ€˜πΎ))
676, 10, 20, 66syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Baseβ€˜πΎ))
687, 36, 24latleeqm1 18416 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ π‘ˆ)))
696, 29, 67, 68syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ π‘ˆ)))
7065, 69mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ π‘ˆ))
7140, 60, 703eqtr2rd 2779 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘ˆ) = (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
722, 71eqtr4id 2791 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ 𝐹) = (𝑅 ∨ π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  1.cp1 18373  Latclat 18380  OLcol 38032  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847
This theorem is referenced by:  cdleme2  39087  cdleme3b  39088  cdleme3c  39089  cdleme5  39099  cdleme11  39129  cdleme12  39130  cdleme16c  39139  cdleme20g  39174  cdleme35a  39307  cdleme36a  39319
  Copyright terms: Public domain W3C validator