Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Structured version   Visualization version   GIF version

Theorem cdleme1 40214
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r f(r) = r u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))

Proof of Theorem cdleme1
StepHypRef Expression
1 cdleme1.f . . 3 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
21oveq2i 7380 . 2 (𝑅 𝐹) = (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
3 simpll 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
4 simpr3l 1235 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
5 hllat 39349 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ Lat)
7 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 39275 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
104, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 ∈ (Base‘𝐾))
11 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
12 simpr1 1195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
137, 8atbase 39275 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 ∈ (Base‘𝐾))
15 simpr2 1196 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝐴)
167, 8atbase 39275 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄 ∈ (Base‘𝐾))
18 cdleme1.j . . . . . . . . 9 = (join‘𝐾)
197, 18latjcl 18380 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
206, 14, 17, 19syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 cdleme1.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
227, 21lhpbase 39985 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2322ad2antlr 727 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑊 ∈ (Base‘𝐾))
24 cdleme1.m . . . . . . . 8 = (meet‘𝐾)
257, 24latmcl 18381 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
266, 20, 23, 25syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
2711, 26eqeltrid 2832 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 ∈ (Base‘𝐾))
287, 18latjcl 18380 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 𝑈) ∈ (Base‘𝐾))
296, 10, 27, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) ∈ (Base‘𝐾))
307, 18latjcl 18380 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
316, 14, 10, 30syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑅) ∈ (Base‘𝐾))
327, 24latmcl 18381 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
336, 31, 23, 32syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
347, 18latjcl 18380 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
356, 17, 33, 34syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
36 cdleme1.l . . . . . 6 = (le‘𝐾)
377, 36, 18latlej1 18389 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 (𝑅 𝑈))
386, 10, 27, 37syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 (𝑅 𝑈))
397, 36, 18, 24, 8atmod3i1 39851 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 (𝑅 𝑈)) → (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
403, 4, 29, 35, 38, 39syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
417, 36, 18latlej2 18390 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 (𝑃 𝑅))
426, 14, 10, 41syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 (𝑃 𝑅))
437, 36, 18, 24, 8atmod3i1 39851 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑃 𝑅)) → (𝑅 ((𝑃 𝑅) 𝑊)) = ((𝑃 𝑅) (𝑅 𝑊)))
443, 4, 31, 23, 42, 43syl131anc 1385 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑃 𝑅) 𝑊)) = ((𝑃 𝑅) (𝑅 𝑊)))
45 eqid 2729 . . . . . . . . . 10 (1.‘𝐾) = (1.‘𝐾)
4636, 18, 45, 8, 21lhpjat2 40008 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (1.‘𝐾))
47463ad2antr3 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑊) = (1.‘𝐾))
4847oveq2d 7385 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) (𝑅 𝑊)) = ((𝑃 𝑅) (1.‘𝐾)))
49 hlol 39347 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OL)
5049ad2antrr 726 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ OL)
517, 24, 45olm11 39213 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑅) (1.‘𝐾)) = (𝑃 𝑅))
5250, 31, 51syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) (1.‘𝐾)) = (𝑃 𝑅))
5344, 48, 523eqtrd 2768 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
5453oveq2d 7385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑄 (𝑃 𝑅)))
557, 18latj12 18425 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
566, 17, 10, 33, 55syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
577, 18latj13 18427 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑅)) = (𝑅 (𝑃 𝑄)))
586, 17, 14, 10, 57syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑃 𝑅)) = (𝑅 (𝑃 𝑄)))
5954, 56, 583eqtr3rd 2773 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝑃 𝑄)) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
6059oveq2d 7385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
6136, 18, 24, 8, 21, 11cdlemeulpq 40207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
62613adantr3 1172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 (𝑃 𝑄))
637, 36, 18latjlej2 18395 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑈 (𝑃 𝑄) → (𝑅 𝑈) (𝑅 (𝑃 𝑄))))
646, 27, 20, 10, 63syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑈 (𝑃 𝑄) → (𝑅 𝑈) (𝑅 (𝑃 𝑄))))
6562, 64mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) (𝑅 (𝑃 𝑄)))
667, 18latjcl 18380 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾))
676, 10, 20, 66syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾))
687, 36, 24latleeqm1 18408 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾)) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄)) ↔ ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈)))
696, 29, 67, 68syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄)) ↔ ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈)))
7065, 69mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈))
7140, 60, 703eqtr2rd 2771 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) = (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))))
722, 71eqtr4id 2783 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  1.cp1 18363  Latclat 18372  OLcol 39160  Atomscatm 39249  HLchlt 39336  LHypclh 39971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975
This theorem is referenced by:  cdleme2  40215  cdleme3b  40216  cdleme3c  40217  cdleme5  40227  cdleme11  40257  cdleme12  40258  cdleme16c  40267  cdleme20g  40302  cdleme35a  40435  cdleme36a  40447
  Copyright terms: Public domain W3C validator