Proof of Theorem cdleme1
Step | Hyp | Ref
| Expression |
1 | | simpll 757 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ HL) |
2 | | simpr3l 1270 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ 𝐴) |
3 | | hllat 35517 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
4 | 3 | ad2antrr 716 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ Lat) |
5 | | eqid 2778 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
6 | | cdleme1.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 5, 6 | atbase 35443 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
8 | 2, 7 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ (Base‘𝐾)) |
9 | | cdleme1.u |
. . . . . 6
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
10 | | simpr1 1205 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
11 | 5, 6 | atbase 35443 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ (Base‘𝐾)) |
13 | | simpr2 1207 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
14 | 5, 6 | atbase 35443 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ (Base‘𝐾)) |
16 | | cdleme1.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
17 | 5, 16 | latjcl 17437 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
18 | 4, 12, 15, 17 | syl3anc 1439 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
19 | | cdleme1.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
20 | 5, 19 | lhpbase 36152 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
21 | 20 | ad2antlr 717 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) |
22 | | cdleme1.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
23 | 5, 22 | latmcl 17438 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
24 | 4, 18, 21, 23 | syl3anc 1439 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
25 | 9, 24 | syl5eqel 2863 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ∈ (Base‘𝐾)) |
26 | 5, 16 | latjcl 17437 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
27 | 4, 8, 25, 26 | syl3anc 1439 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
28 | 5, 16 | latjcl 17437 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
29 | 4, 12, 8, 28 | syl3anc 1439 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
30 | 5, 22 | latmcl 17438 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) |
31 | 4, 29, 21, 30 | syl3anc 1439 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) |
32 | 5, 16 | latjcl 17437 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∈ (Base‘𝐾)) |
33 | 4, 15, 31, 32 | syl3anc 1439 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∈ (Base‘𝐾)) |
34 | | cdleme1.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
35 | 5, 34, 16 | latlej1 17446 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 ≤ (𝑅 ∨ 𝑈)) |
36 | 4, 8, 25, 35 | syl3anc 1439 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ≤ (𝑅 ∨ 𝑈)) |
37 | 5, 34, 16, 22, 6 | atmod3i1 36018 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑅 ∨ 𝑈)) → (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) = ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
38 | 1, 2, 27, 33, 36, 37 | syl131anc 1451 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) = ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
39 | 5, 34, 16 | latlej2 17447 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
40 | 4, 12, 8, 39 | syl3anc 1439 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
41 | 5, 34, 16, 22, 6 | atmod3i1 36018 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) → (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ 𝑊))) |
42 | 1, 2, 29, 21, 40, 41 | syl131anc 1451 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ 𝑊))) |
43 | | eqid 2778 |
. . . . . . . . . 10
⊢
(1.‘𝐾) =
(1.‘𝐾) |
44 | 34, 16, 43, 6, 19 | lhpjat2 36175 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
45 | 44 | 3ad2antr3 1198 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
46 | 45 | oveq2d 6938 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ (1.‘𝐾))) |
47 | | hlol 35515 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
48 | 47 | ad2antrr 716 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ OL) |
49 | 5, 22, 43 | olm11 35381 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑅)) |
50 | 48, 29, 49 | syl2anc 579 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑅) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑅)) |
51 | 42, 46, 50 | 3eqtrd 2818 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = (𝑃 ∨ 𝑅)) |
52 | 51 | oveq2d 6938 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = (𝑄 ∨ (𝑃 ∨ 𝑅))) |
53 | 5, 16 | latj12 17482 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
54 | 4, 15, 8, 31, 53 | syl13anc 1440 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
55 | 5, 16 | latj13 17484 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄))) |
56 | 4, 15, 12, 8, 55 | syl13anc 1440 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄))) |
57 | 52, 54, 56 | 3eqtr3rd 2823 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
58 | 57 | oveq2d 6938 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
59 | 34, 16, 22, 6, 19, 9 | cdlemeulpq 36374 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
60 | 59 | 3adantr3 1173 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
61 | 5, 34, 16 | latjlej2 17452 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑈 ≤ (𝑃 ∨ 𝑄) → (𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)))) |
62 | 4, 25, 18, 8, 61 | syl13anc 1440 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑈 ≤ (𝑃 ∨ 𝑄) → (𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)))) |
63 | 60, 62 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄))) |
64 | 5, 16 | latjcl 17437 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
65 | 4, 8, 18, 64 | syl3anc 1439 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
66 | 5, 34, 22 | latleeqm1 17465 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ 𝑈))) |
67 | 4, 27, 65, 66 | syl3anc 1439 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ 𝑈))) |
68 | 63, 67 | mpbid 224 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ 𝑈)) |
69 | 38, 58, 68 | 3eqtr2rd 2821 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑈) = (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
70 | | cdleme1.f |
. . 3
⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
71 | 70 | oveq2i 6933 |
. 2
⊢ (𝑅 ∨ 𝐹) = (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
72 | 69, 71 | syl6reqr 2833 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) = (𝑅 ∨ 𝑈)) |