Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Structured version   Visualization version   GIF version

Theorem cdleme1 38241
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r f(r) = r u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))

Proof of Theorem cdleme1
StepHypRef Expression
1 cdleme1.f . . 3 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
21oveq2i 7286 . 2 (𝑅 𝐹) = (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
3 simpll 764 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
4 simpr3l 1233 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
5 hllat 37377 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 723 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ Lat)
7 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 37303 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
104, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 ∈ (Base‘𝐾))
11 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
12 simpr1 1193 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
137, 8atbase 37303 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 ∈ (Base‘𝐾))
15 simpr2 1194 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝐴)
167, 8atbase 37303 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄 ∈ (Base‘𝐾))
18 cdleme1.j . . . . . . . . 9 = (join‘𝐾)
197, 18latjcl 18157 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
206, 14, 17, 19syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 cdleme1.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
227, 21lhpbase 38012 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2322ad2antlr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑊 ∈ (Base‘𝐾))
24 cdleme1.m . . . . . . . 8 = (meet‘𝐾)
257, 24latmcl 18158 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
266, 20, 23, 25syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
2711, 26eqeltrid 2843 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 ∈ (Base‘𝐾))
287, 18latjcl 18157 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 𝑈) ∈ (Base‘𝐾))
296, 10, 27, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) ∈ (Base‘𝐾))
307, 18latjcl 18157 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
316, 14, 10, 30syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑅) ∈ (Base‘𝐾))
327, 24latmcl 18158 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
336, 31, 23, 32syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
347, 18latjcl 18157 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
356, 17, 33, 34syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
36 cdleme1.l . . . . . 6 = (le‘𝐾)
377, 36, 18latlej1 18166 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 (𝑅 𝑈))
386, 10, 27, 37syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 (𝑅 𝑈))
397, 36, 18, 24, 8atmod3i1 37878 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 (𝑅 𝑈)) → (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
403, 4, 29, 35, 38, 39syl131anc 1382 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
417, 36, 18latlej2 18167 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 (𝑃 𝑅))
426, 14, 10, 41syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 (𝑃 𝑅))
437, 36, 18, 24, 8atmod3i1 37878 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑃 𝑅)) → (𝑅 ((𝑃 𝑅) 𝑊)) = ((𝑃 𝑅) (𝑅 𝑊)))
443, 4, 31, 23, 42, 43syl131anc 1382 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑃 𝑅) 𝑊)) = ((𝑃 𝑅) (𝑅 𝑊)))
45 eqid 2738 . . . . . . . . . 10 (1.‘𝐾) = (1.‘𝐾)
4636, 18, 45, 8, 21lhpjat2 38035 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (1.‘𝐾))
47463ad2antr3 1189 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑊) = (1.‘𝐾))
4847oveq2d 7291 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) (𝑅 𝑊)) = ((𝑃 𝑅) (1.‘𝐾)))
49 hlol 37375 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OL)
5049ad2antrr 723 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ OL)
517, 24, 45olm11 37241 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑅) (1.‘𝐾)) = (𝑃 𝑅))
5250, 31, 51syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) (1.‘𝐾)) = (𝑃 𝑅))
5344, 48, 523eqtrd 2782 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
5453oveq2d 7291 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑄 (𝑃 𝑅)))
557, 18latj12 18202 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
566, 17, 10, 33, 55syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
577, 18latj13 18204 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑅)) = (𝑅 (𝑃 𝑄)))
586, 17, 14, 10, 57syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑃 𝑅)) = (𝑅 (𝑃 𝑄)))
5954, 56, 583eqtr3rd 2787 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝑃 𝑄)) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
6059oveq2d 7291 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
6136, 18, 24, 8, 21, 11cdlemeulpq 38234 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
62613adantr3 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 (𝑃 𝑄))
637, 36, 18latjlej2 18172 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑈 (𝑃 𝑄) → (𝑅 𝑈) (𝑅 (𝑃 𝑄))))
646, 27, 20, 10, 63syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑈 (𝑃 𝑄) → (𝑅 𝑈) (𝑅 (𝑃 𝑄))))
6562, 64mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) (𝑅 (𝑃 𝑄)))
667, 18latjcl 18157 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾))
676, 10, 20, 66syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾))
687, 36, 24latleeqm1 18185 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾)) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄)) ↔ ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈)))
696, 29, 67, 68syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄)) ↔ ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈)))
7065, 69mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈))
7140, 60, 703eqtr2rd 2785 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) = (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))))
722, 71eqtr4id 2797 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  1.cp1 18142  Latclat 18149  OLcol 37188  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002
This theorem is referenced by:  cdleme2  38242  cdleme3b  38243  cdleme3c  38244  cdleme5  38254  cdleme11  38284  cdleme12  38285  cdleme16c  38294  cdleme20g  38329  cdleme35a  38462  cdleme36a  38474
  Copyright terms: Public domain W3C validator