Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Structured version   Visualization version   GIF version

Theorem cdleme1 40228
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r f(r) = r u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))

Proof of Theorem cdleme1
StepHypRef Expression
1 cdleme1.f . . 3 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
21oveq2i 7401 . 2 (𝑅 𝐹) = (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
3 simpll 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
4 simpr3l 1235 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
5 hllat 39363 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ Lat)
7 eqid 2730 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 39289 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
104, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 ∈ (Base‘𝐾))
11 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
12 simpr1 1195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
137, 8atbase 39289 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 ∈ (Base‘𝐾))
15 simpr2 1196 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝐴)
167, 8atbase 39289 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄 ∈ (Base‘𝐾))
18 cdleme1.j . . . . . . . . 9 = (join‘𝐾)
197, 18latjcl 18405 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
206, 14, 17, 19syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 cdleme1.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
227, 21lhpbase 39999 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2322ad2antlr 727 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑊 ∈ (Base‘𝐾))
24 cdleme1.m . . . . . . . 8 = (meet‘𝐾)
257, 24latmcl 18406 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
266, 20, 23, 25syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
2711, 26eqeltrid 2833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 ∈ (Base‘𝐾))
287, 18latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 𝑈) ∈ (Base‘𝐾))
296, 10, 27, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) ∈ (Base‘𝐾))
307, 18latjcl 18405 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
316, 14, 10, 30syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑅) ∈ (Base‘𝐾))
327, 24latmcl 18406 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
336, 31, 23, 32syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
347, 18latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
356, 17, 33, 34syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
36 cdleme1.l . . . . . 6 = (le‘𝐾)
377, 36, 18latlej1 18414 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 (𝑅 𝑈))
386, 10, 27, 37syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 (𝑅 𝑈))
397, 36, 18, 24, 8atmod3i1 39865 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 (𝑅 𝑈)) → (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
403, 4, 29, 35, 38, 39syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
417, 36, 18latlej2 18415 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 (𝑃 𝑅))
426, 14, 10, 41syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 (𝑃 𝑅))
437, 36, 18, 24, 8atmod3i1 39865 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑃 𝑅)) → (𝑅 ((𝑃 𝑅) 𝑊)) = ((𝑃 𝑅) (𝑅 𝑊)))
443, 4, 31, 23, 42, 43syl131anc 1385 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑃 𝑅) 𝑊)) = ((𝑃 𝑅) (𝑅 𝑊)))
45 eqid 2730 . . . . . . . . . 10 (1.‘𝐾) = (1.‘𝐾)
4636, 18, 45, 8, 21lhpjat2 40022 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (1.‘𝐾))
47463ad2antr3 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑊) = (1.‘𝐾))
4847oveq2d 7406 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) (𝑅 𝑊)) = ((𝑃 𝑅) (1.‘𝐾)))
49 hlol 39361 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OL)
5049ad2antrr 726 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ OL)
517, 24, 45olm11 39227 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑅) (1.‘𝐾)) = (𝑃 𝑅))
5250, 31, 51syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) (1.‘𝐾)) = (𝑃 𝑅))
5344, 48, 523eqtrd 2769 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ((𝑃 𝑅) 𝑊)) = (𝑃 𝑅))
5453oveq2d 7406 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑄 (𝑃 𝑅)))
557, 18latj12 18450 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
566, 17, 10, 33, 55syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑅 ((𝑃 𝑅) 𝑊))) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
577, 18latj13 18452 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑅)) = (𝑅 (𝑃 𝑄)))
586, 17, 14, 10, 57syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 (𝑃 𝑅)) = (𝑅 (𝑃 𝑄)))
5954, 56, 583eqtr3rd 2774 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝑃 𝑄)) = (𝑅 (𝑄 ((𝑃 𝑅) 𝑊))))
6059oveq2d 7406 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = ((𝑅 𝑈) (𝑅 (𝑄 ((𝑃 𝑅) 𝑊)))))
6136, 18, 24, 8, 21, 11cdlemeulpq 40221 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
62613adantr3 1172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 (𝑃 𝑄))
637, 36, 18latjlej2 18420 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑈 (𝑃 𝑄) → (𝑅 𝑈) (𝑅 (𝑃 𝑄))))
646, 27, 20, 10, 63syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑈 (𝑃 𝑄) → (𝑅 𝑈) (𝑅 (𝑃 𝑄))))
6562, 64mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) (𝑅 (𝑃 𝑄)))
667, 18latjcl 18405 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾))
676, 10, 20, 66syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾))
687, 36, 24latleeqm1 18433 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 (𝑃 𝑄)) ∈ (Base‘𝐾)) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄)) ↔ ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈)))
696, 29, 67, 68syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄)) ↔ ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈)))
7065, 69mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑅 (𝑃 𝑄))) = (𝑅 𝑈))
7140, 60, 703eqtr2rd 2772 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) = (𝑅 ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))))
722, 71eqtr4id 2784 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  1.cp1 18390  Latclat 18397  OLcol 39174  Atomscatm 39263  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989
This theorem is referenced by:  cdleme2  40229  cdleme3b  40230  cdleme3c  40231  cdleme5  40241  cdleme11  40271  cdleme12  40272  cdleme16c  40281  cdleme20g  40316  cdleme35a  40449  cdleme36a  40461
  Copyright terms: Public domain W3C validator