Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Structured version   Visualization version   GIF version

Theorem cdleme1 39564
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r ∨ f(r) = r ∨ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l ≀ = (leβ€˜πΎ)
cdleme1.j ∨ = (joinβ€˜πΎ)
cdleme1.m ∧ = (meetβ€˜πΎ)
cdleme1.a 𝐴 = (Atomsβ€˜πΎ)
cdleme1.h 𝐻 = (LHypβ€˜πΎ)
cdleme1.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme1.f 𝐹 = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
Assertion
Ref Expression
cdleme1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ 𝐹) = (𝑅 ∨ π‘ˆ))

Proof of Theorem cdleme1
StepHypRef Expression
1 cdleme1.f . . 3 𝐹 = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
21oveq2i 7423 . 2 (𝑅 ∨ 𝐹) = (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
3 simpll 764 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
4 simpr3l 1233 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ∈ 𝐴)
5 hllat 38699 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
65ad2antrr 723 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝐾 ∈ Lat)
7 eqid 2731 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
8 cdleme1.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
97, 8atbase 38625 . . . . . 6 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
104, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
11 cdleme1.u . . . . . 6 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
12 simpr1 1193 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
137, 8atbase 38625 . . . . . . . . 9 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1412, 13syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
15 simpr2 1194 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑄 ∈ 𝐴)
167, 8atbase 38625 . . . . . . . . 9 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1715, 16syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
18 cdleme1.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
197, 18latjcl 18402 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
206, 14, 17, 19syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
21 cdleme1.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
227, 21lhpbase 39335 . . . . . . . 8 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2322ad2antlr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
24 cdleme1.m . . . . . . . 8 ∧ = (meetβ€˜πΎ)
257, 24latmcl 18403 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
266, 20, 23, 25syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
2711, 26eqeltrid 2836 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
287, 18latjcl 18402 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
296, 10, 27, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
307, 18latjcl 18402 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
316, 14, 10, 30syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
327, 24latmcl 18403 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
336, 31, 23, 32syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
347, 18latjcl 18402 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
356, 17, 33, 34syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
36 cdleme1.l . . . . . 6 ≀ = (leβ€˜πΎ)
377, 36, 18latlej1 18411 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ 𝑅 ≀ (𝑅 ∨ π‘ˆ))
386, 10, 27, 37syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ≀ (𝑅 ∨ π‘ˆ))
397, 36, 18, 24, 8atmod3i1 39201 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑅 ∨ π‘ˆ)) β†’ (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
403, 4, 29, 35, 38, 39syl131anc 1382 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
417, 36, 18latlej2 18412 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ 𝑅 ≀ (𝑃 ∨ 𝑅))
426, 14, 10, 41syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑅))
437, 36, 18, 24, 8atmod3i1 39201 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑅)) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ π‘Š)))
443, 4, 31, 23, 42, 43syl131anc 1382 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ π‘Š)))
45 eqid 2731 . . . . . . . . . 10 (1.β€˜πΎ) = (1.β€˜πΎ)
4636, 18, 45, 8, 21lhpjat2 39358 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
47463ad2antr3 1189 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
4847oveq2d 7428 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ π‘Š)) = ((𝑃 ∨ 𝑅) ∧ (1.β€˜πΎ)))
49 hlol 38697 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
5049ad2antrr 723 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ 𝐾 ∈ OL)
517, 24, 45olm11 38563 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑅) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑅))
5250, 31, 51syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑅) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑅))
5344, 48, 523eqtrd 2775 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)) = (𝑃 ∨ 𝑅))
5453oveq2d 7428 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = (𝑄 ∨ (𝑃 ∨ 𝑅)))
557, 18latj12 18447 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑅) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
566, 17, 10, 33, 55syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
577, 18latj13 18449 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ))) β†’ (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄)))
586, 17, 14, 10, 57syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄)))
5954, 56, 583eqtr3rd 2780 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
6059oveq2d 7428 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
6136, 18, 24, 8, 21, 11cdlemeulpq 39557 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
62613adantr3 1170 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
637, 36, 18latjlej2 18417 . . . . . 6 ((𝐾 ∈ Lat ∧ (π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ))) β†’ (π‘ˆ ≀ (𝑃 ∨ 𝑄) β†’ (𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄))))
646, 27, 20, 10, 63syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (π‘ˆ ≀ (𝑃 ∨ 𝑄) β†’ (𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄))))
6562, 64mpd 15 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄)))
667, 18latjcl 18402 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Baseβ€˜πΎ))
676, 10, 20, 66syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Baseβ€˜πΎ))
687, 36, 24latleeqm1 18430 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ π‘ˆ)))
696, 29, 67, 68syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑅 ∨ π‘ˆ) ≀ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ π‘ˆ)))
7065, 69mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ ((𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ π‘ˆ))
7140, 60, 703eqtr2rd 2778 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ π‘ˆ) = (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))))
722, 71eqtr4id 2790 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))) β†’ (𝑅 ∨ 𝐹) = (𝑅 ∨ π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211  joincjn 18274  meetcmee 18275  1.cp1 18387  Latclat 18394  OLcol 38510  Atomscatm 38599  HLchlt 38686  LHypclh 39321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38512  df-ol 38514  df-oml 38515  df-covers 38602  df-ats 38603  df-atl 38634  df-cvlat 38658  df-hlat 38687  df-psubsp 38840  df-pmap 38841  df-padd 39133  df-lhyp 39325
This theorem is referenced by:  cdleme2  39565  cdleme3b  39566  cdleme3c  39567  cdleme5  39577  cdleme11  39607  cdleme12  39608  cdleme16c  39617  cdleme20g  39652  cdleme35a  39785  cdleme36a  39797
  Copyright terms: Public domain W3C validator