Proof of Theorem cdleme1
Step | Hyp | Ref
| Expression |
1 | | cdleme1.f |
. . 3
⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
2 | 1 | oveq2i 7224 |
. 2
⊢ (𝑅 ∨ 𝐹) = (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
3 | | simpll 767 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ HL) |
4 | | simpr3l 1236 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ 𝐴) |
5 | | hllat 37114 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
6 | 5 | ad2antrr 726 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ Lat) |
7 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | cdleme1.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 7, 8 | atbase 37040 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
10 | 4, 9 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ (Base‘𝐾)) |
11 | | cdleme1.u |
. . . . . 6
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
12 | | simpr1 1196 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
13 | 7, 8 | atbase 37040 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ (Base‘𝐾)) |
15 | | simpr2 1197 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
16 | 7, 8 | atbase 37040 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ (Base‘𝐾)) |
18 | | cdleme1.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
19 | 7, 18 | latjcl 17945 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 6, 14, 17, 19 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | | cdleme1.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
22 | 7, 21 | lhpbase 37749 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
23 | 22 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) |
24 | | cdleme1.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
25 | 7, 24 | latmcl 17946 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
26 | 6, 20, 23, 25 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
27 | 11, 26 | eqeltrid 2842 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ∈ (Base‘𝐾)) |
28 | 7, 18 | latjcl 17945 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
29 | 6, 10, 27, 28 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
30 | 7, 18 | latjcl 17945 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
31 | 6, 14, 10, 30 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
32 | 7, 24 | latmcl 17946 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) |
33 | 6, 31, 23, 32 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) |
34 | 7, 18 | latjcl 17945 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∈ (Base‘𝐾)) |
35 | 6, 17, 33, 34 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∈ (Base‘𝐾)) |
36 | | cdleme1.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
37 | 7, 36, 18 | latlej1 17954 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 ≤ (𝑅 ∨ 𝑈)) |
38 | 6, 10, 27, 37 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ≤ (𝑅 ∨ 𝑈)) |
39 | 7, 36, 18, 24, 8 | atmod3i1 37615 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑅 ∨ 𝑈)) → (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) = ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
40 | 3, 4, 29, 35, 38, 39 | syl131anc 1385 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) = ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
41 | 7, 36, 18 | latlej2 17955 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
42 | 6, 14, 10, 41 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ≤ (𝑃 ∨ 𝑅)) |
43 | 7, 36, 18, 24, 8 | atmod3i1 37615 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑅)) → (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ 𝑊))) |
44 | 3, 4, 31, 23, 42, 43 | syl131anc 1385 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ 𝑊))) |
45 | | eqid 2737 |
. . . . . . . . . 10
⊢
(1.‘𝐾) =
(1.‘𝐾) |
46 | 36, 18, 45, 8, 21 | lhpjat2 37772 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
47 | 46 | 3ad2antr3 1192 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
48 | 47 | oveq2d 7229 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑅) ∧ (𝑅 ∨ 𝑊)) = ((𝑃 ∨ 𝑅) ∧ (1.‘𝐾))) |
49 | | hlol 37112 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
50 | 49 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ OL) |
51 | 7, 24, 45 | olm11 36978 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑅)) |
52 | 50, 31, 51 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑅) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑅)) |
53 | 44, 48, 52 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) = (𝑃 ∨ 𝑅)) |
54 | 53 | oveq2d 7229 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = (𝑄 ∨ (𝑃 ∨ 𝑅))) |
55 | 7, 18 | latj12 17990 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
56 | 6, 17, 10, 33, 55 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ (𝑅 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
57 | 7, 18 | latj13 17992 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄))) |
58 | 6, 17, 14, 10, 57 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑄 ∨ (𝑃 ∨ 𝑅)) = (𝑅 ∨ (𝑃 ∨ 𝑄))) |
59 | 54, 56, 58 | 3eqtr3rd 2786 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
60 | 59 | oveq2d 7229 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
61 | 36, 18, 24, 8, 21, 11 | cdlemeulpq 37971 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
62 | 61 | 3adantr3 1173 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
63 | 7, 36, 18 | latjlej2 17960 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑈 ≤ (𝑃 ∨ 𝑄) → (𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)))) |
64 | 6, 27, 20, 10, 63 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑈 ≤ (𝑃 ∨ 𝑄) → (𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)))) |
65 | 62, 64 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄))) |
66 | 7, 18 | latjcl 17945 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
67 | 6, 10, 20, 66 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
68 | 7, 36, 24 | latleeqm1 17973 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ 𝑈))) |
69 | 6, 29, 67, 68 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝑈) ≤ (𝑅 ∨ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ 𝑈))) |
70 | 65, 69 | mpbid 235 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝑈) ∧ (𝑅 ∨ (𝑃 ∨ 𝑄))) = (𝑅 ∨ 𝑈)) |
71 | 40, 60, 70 | 3eqtr2rd 2784 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝑈) = (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))))) |
72 | 2, 71 | eqtr4id 2797 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) = (𝑅 ∨ 𝑈)) |