Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr2 1187 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1087 |
This theorem is referenced by: oppccatid 17062 subccatid 17190 setccatid 17425 catccatid 17443 estrccatid 17463 xpccatid 17519 gsmsymgreqlem1 18640 kerf1ghm 19581 ax5seg 26846 3pthdlem1 28063 poxp2 33359 frrlem8 33406 segconeq 33897 ifscgr 33931 brofs2 33964 brifs2 33965 idinside 33971 btwnconn1lem8 33981 btwnconn1lem11 33984 btwnconn1lem12 33985 segcon2 33992 seglecgr12im 33997 unbdqndv2 34276 lplnexllnN 37176 paddasslem9 37440 paddasslem15 37446 pmodlem2 37459 lhp2lt 37613 |
Copyright terms: Public domain | W3C validator |