| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8079 poxp3 8086 frrlem8 8229 ttrcltr 9613 ttrclss 9617 rnttrcl 9619 ttrclselem2 9623 oppccatid 17627 subccatid 17755 setccatid 17993 catccatid 18015 estrccatid 18040 xpccatid 18096 kerf1ghm 19161 gsmsymgreqlem1 19344 ax5seg 28918 3pthdlem1 30146 segconeq 36075 ifscgr 36109 brofs2 36142 brifs2 36143 idinside 36149 btwnconn1lem8 36159 btwnconn1lem11 36162 btwnconn1lem12 36163 segcon2 36170 seglecgr12im 36175 unbdqndv2 36576 lplnexllnN 39683 paddasslem9 39947 paddasslem15 39953 pmodlem2 39966 lhp2lt 40120 ssccatid 49197 isthincd2 49562 mndtccatid 49712 |
| Copyright terms: Public domain | W3C validator |