MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr2r Structured version   Visualization version   GIF version

Theorem simpr2r 1233
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr2r ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simpr2r
StepHypRef Expression
1 simprr 772 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr2 1189 1 ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  poxp2  8184  poxp3  8191  frrlem8  8334  ttrcltr  9785  ttrclss  9789  rnttrcl  9791  ttrclselem2  9795  oppccatid  17779  subccatid  17910  setccatid  18151  catccatid  18173  estrccatid  18200  xpccatid  18257  kerf1ghm  19287  gsmsymgreqlem1  19472  ax5seg  28971  3pthdlem1  30196  segconeq  35974  ifscgr  36008  brofs2  36041  brifs2  36042  idinside  36048  btwnconn1lem8  36058  btwnconn1lem11  36061  btwnconn1lem12  36062  segcon2  36069  seglecgr12im  36074  unbdqndv2  36477  lplnexllnN  39521  paddasslem9  39785  paddasslem15  39791  pmodlem2  39804  lhp2lt  39958  isthincd2  48705  mndtccatid  48760
  Copyright terms: Public domain W3C validator