Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr2 1187 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: frrlem8 8080 oppccatid 17347 subccatid 17477 setccatid 17715 catccatid 17737 estrccatid 17764 xpccatid 17821 gsmsymgreqlem1 18953 kerf1ghm 19902 ax5seg 27209 3pthdlem1 28429 ttrcltr 33702 ttrclss 33706 rnttrcl 33708 ttrclselem2 33712 poxp2 33717 segconeq 34239 ifscgr 34273 brofs2 34306 brifs2 34307 idinside 34313 btwnconn1lem8 34323 btwnconn1lem11 34326 btwnconn1lem12 34327 segcon2 34334 seglecgr12im 34339 unbdqndv2 34618 lplnexllnN 37505 paddasslem9 37769 paddasslem15 37775 pmodlem2 37788 lhp2lt 37942 isthincd2 46207 mndtccatid 46260 |
Copyright terms: Public domain | W3C validator |