MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr2r Structured version   Visualization version   GIF version

Theorem simpr2r 1232
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr2r ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simpr2r
StepHypRef Expression
1 simprr 773 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr2 1188 1 ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8167  poxp3  8174  frrlem8  8317  ttrcltr  9754  ttrclss  9758  rnttrcl  9760  ttrclselem2  9764  oppccatid  17766  subccatid  17897  setccatid  18138  catccatid  18160  estrccatid  18187  xpccatid  18244  kerf1ghm  19278  gsmsymgreqlem1  19463  ax5seg  28968  3pthdlem1  30193  segconeq  35992  ifscgr  36026  brofs2  36059  brifs2  36060  idinside  36066  btwnconn1lem8  36076  btwnconn1lem11  36079  btwnconn1lem12  36080  segcon2  36087  seglecgr12im  36092  unbdqndv2  36494  lplnexllnN  39547  paddasslem9  39811  paddasslem15  39817  pmodlem2  39830  lhp2lt  39984  isthincd2  48838  mndtccatid  48896
  Copyright terms: Public domain W3C validator