Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr2 1188 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: frrlem8 8109 ttrcltr 9474 ttrclss 9478 rnttrcl 9480 ttrclselem2 9484 oppccatid 17430 subccatid 17561 setccatid 17799 catccatid 17821 estrccatid 17848 xpccatid 17905 gsmsymgreqlem1 19038 kerf1ghm 19987 ax5seg 27306 3pthdlem1 28528 poxp2 33790 segconeq 34312 ifscgr 34346 brofs2 34379 brifs2 34380 idinside 34386 btwnconn1lem8 34396 btwnconn1lem11 34399 btwnconn1lem12 34400 segcon2 34407 seglecgr12im 34412 unbdqndv2 34691 lplnexllnN 37578 paddasslem9 37842 paddasslem15 37848 pmodlem2 37861 lhp2lt 38015 isthincd2 46319 mndtccatid 46374 |
Copyright terms: Public domain | W3C validator |