MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr2r Structured version   Visualization version   GIF version

Theorem simpr2r 1234
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr2r ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simpr2r
StepHypRef Expression
1 simprr 772 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr2 1190 1 ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8125  poxp3  8132  frrlem8  8275  ttrcltr  9676  ttrclss  9680  rnttrcl  9682  ttrclselem2  9686  oppccatid  17687  subccatid  17815  setccatid  18053  catccatid  18075  estrccatid  18100  xpccatid  18156  kerf1ghm  19186  gsmsymgreqlem1  19367  ax5seg  28872  3pthdlem1  30100  segconeq  36005  ifscgr  36039  brofs2  36072  brifs2  36073  idinside  36079  btwnconn1lem8  36089  btwnconn1lem11  36092  btwnconn1lem12  36093  segcon2  36100  seglecgr12im  36105  unbdqndv2  36506  lplnexllnN  39565  paddasslem9  39829  paddasslem15  39835  pmodlem2  39848  lhp2lt  40002  ssccatid  49065  isthincd2  49430  mndtccatid  49580
  Copyright terms: Public domain W3C validator