| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8073 poxp3 8080 frrlem8 8223 ttrcltr 9606 ttrclss 9610 rnttrcl 9612 ttrclselem2 9616 oppccatid 17622 subccatid 17750 setccatid 17988 catccatid 18010 estrccatid 18035 xpccatid 18091 kerf1ghm 19157 gsmsymgreqlem1 19340 ax5seg 28914 3pthdlem1 30139 segconeq 36043 ifscgr 36077 brofs2 36110 brifs2 36111 idinside 36117 btwnconn1lem8 36127 btwnconn1lem11 36130 btwnconn1lem12 36131 segcon2 36138 seglecgr12im 36143 unbdqndv2 36544 lplnexllnN 39602 paddasslem9 39866 paddasslem15 39872 pmodlem2 39885 lhp2lt 40039 ssccatid 49103 isthincd2 49468 mndtccatid 49618 |
| Copyright terms: Public domain | W3C validator |