| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 poxp3 8132 frrlem8 8275 ttrcltr 9676 ttrclss 9680 rnttrcl 9682 ttrclselem2 9686 oppccatid 17687 subccatid 17815 setccatid 18053 catccatid 18075 estrccatid 18100 xpccatid 18156 kerf1ghm 19186 gsmsymgreqlem1 19367 ax5seg 28872 3pthdlem1 30100 segconeq 36005 ifscgr 36039 brofs2 36072 brifs2 36073 idinside 36079 btwnconn1lem8 36089 btwnconn1lem11 36092 btwnconn1lem12 36093 segcon2 36100 seglecgr12im 36105 unbdqndv2 36506 lplnexllnN 39565 paddasslem9 39829 paddasslem15 39835 pmodlem2 39848 lhp2lt 40002 ssccatid 49065 isthincd2 49430 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |