| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8083 poxp3 8090 frrlem8 8233 ttrcltr 9631 ttrclss 9635 rnttrcl 9637 ttrclselem2 9641 oppccatid 17643 subccatid 17771 setccatid 18009 catccatid 18031 estrccatid 18056 xpccatid 18112 kerf1ghm 19144 gsmsymgreqlem1 19327 ax5seg 28901 3pthdlem1 30126 segconeq 35983 ifscgr 36017 brofs2 36050 brifs2 36051 idinside 36057 btwnconn1lem8 36067 btwnconn1lem11 36070 btwnconn1lem12 36071 segcon2 36078 seglecgr12im 36083 unbdqndv2 36484 lplnexllnN 39543 paddasslem9 39807 paddasslem15 39813 pmodlem2 39826 lhp2lt 39980 ssccatid 49058 isthincd2 49423 mndtccatid 49573 |
| Copyright terms: Public domain | W3C validator |