MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr2r Structured version   Visualization version   GIF version

Theorem simpr2r 1234
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr2r ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simpr2r
StepHypRef Expression
1 simprr 772 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr2 1190 1 ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8073  poxp3  8080  frrlem8  8223  ttrcltr  9606  ttrclss  9610  rnttrcl  9612  ttrclselem2  9616  oppccatid  17622  subccatid  17750  setccatid  17988  catccatid  18010  estrccatid  18035  xpccatid  18091  kerf1ghm  19157  gsmsymgreqlem1  19340  ax5seg  28914  3pthdlem1  30139  segconeq  36043  ifscgr  36077  brofs2  36110  brifs2  36111  idinside  36117  btwnconn1lem8  36127  btwnconn1lem11  36130  btwnconn1lem12  36131  segcon2  36138  seglecgr12im  36143  unbdqndv2  36544  lplnexllnN  39602  paddasslem9  39866  paddasslem15  39872  pmodlem2  39885  lhp2lt  40039  ssccatid  49103  isthincd2  49468  mndtccatid  49618
  Copyright terms: Public domain W3C validator