| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8142 poxp3 8149 frrlem8 8292 ttrcltr 9730 ttrclss 9734 rnttrcl 9736 ttrclselem2 9740 oppccatid 17731 subccatid 17859 setccatid 18097 catccatid 18119 estrccatid 18144 xpccatid 18200 kerf1ghm 19230 gsmsymgreqlem1 19411 ax5seg 28917 3pthdlem1 30145 segconeq 36028 ifscgr 36062 brofs2 36095 brifs2 36096 idinside 36102 btwnconn1lem8 36112 btwnconn1lem11 36115 btwnconn1lem12 36116 segcon2 36123 seglecgr12im 36128 unbdqndv2 36529 lplnexllnN 39583 paddasslem9 39847 paddasslem15 39853 pmodlem2 39866 lhp2lt 40020 ssccatid 49039 isthincd2 49323 mndtccatid 49464 |
| Copyright terms: Public domain | W3C validator |