Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc3 Structured version   Visualization version   GIF version

Theorem cdlemc3 39698
Description: Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l ≀ = (leβ€˜πΎ)
cdlemc3.j ∨ = (joinβ€˜πΎ)
cdlemc3.m ∧ = (meetβ€˜πΎ)
cdlemc3.a 𝐴 = (Atomsβ€˜πΎ)
cdlemc3.h 𝐻 = (LHypβ€˜πΎ)
cdlemc3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemc3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemc3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))))

Proof of Theorem cdlemc3
StepHypRef Expression
1 simpll 765 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
2 simpl 481 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
3 simpr1 1191 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐹 ∈ 𝑇)
4 simpr2l 1229 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
5 cdlemc3.l . . . . 5 ≀ = (leβ€˜πΎ)
6 cdlemc3.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
7 cdlemc3.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
8 cdlemc3.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
95, 6, 7, 8ltrnat 39645 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
102, 3, 4, 9syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
11 simpr3l 1231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑄 ∈ 𝐴)
12 eqid 2728 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
13 cdlemc3.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1412, 7, 8, 13trlcl 39669 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
153, 14syldan 589 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
165, 6, 7, 8ltrnel 39644 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
17163adant3r3 1181 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
185, 6, 7, 8, 13trlnle 39691 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ (π‘…β€˜πΉ))
192, 3, 17, 18syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ (π‘…β€˜πΉ))
20 cdlemc3.j . . . 4 ∨ = (joinβ€˜πΎ)
2112, 5, 20, 6hlexch2 38888 . . 3 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ)) ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ (π‘…β€˜πΉ)) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ))))
221, 10, 11, 15, 19, 21syl131anc 1380 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ))))
235, 20, 6, 7, 8, 13trljat2 39672 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = (𝑃 ∨ (πΉβ€˜π‘ƒ)))
24233adant3r3 1181 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = (𝑃 ∨ (πΉβ€˜π‘ƒ)))
2524breq2d 5164 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑄 ≀ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) ↔ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))))
2622, 25sylibd 238 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  lecple 17247  joincjn 18310  meetcmee 18311  Atomscatm 38767  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  trLctrl 39663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-map 8853  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664
This theorem is referenced by:  cdlemc4  39699
  Copyright terms: Public domain W3C validator