Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc3 Structured version   Visualization version   GIF version

Theorem cdlemc3 38659
Description: Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l ≀ = (leβ€˜πΎ)
cdlemc3.j ∨ = (joinβ€˜πΎ)
cdlemc3.m ∧ = (meetβ€˜πΎ)
cdlemc3.a 𝐴 = (Atomsβ€˜πΎ)
cdlemc3.h 𝐻 = (LHypβ€˜πΎ)
cdlemc3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemc3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemc3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))))

Proof of Theorem cdlemc3
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
2 simpl 484 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
3 simpr1 1195 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐹 ∈ 𝑇)
4 simpr2l 1233 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
5 cdlemc3.l . . . . 5 ≀ = (leβ€˜πΎ)
6 cdlemc3.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
7 cdlemc3.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
8 cdlemc3.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
95, 6, 7, 8ltrnat 38606 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
102, 3, 4, 9syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
11 simpr3l 1235 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑄 ∈ 𝐴)
12 eqid 2737 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
13 cdlemc3.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1412, 7, 8, 13trlcl 38630 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
153, 14syldan 592 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
165, 6, 7, 8ltrnel 38605 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
17163adant3r3 1185 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
185, 6, 7, 8, 13trlnle 38652 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ (π‘…β€˜πΉ))
192, 3, 17, 18syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ (π‘…β€˜πΉ))
20 cdlemc3.j . . . 4 ∨ = (joinβ€˜πΎ)
2112, 5, 20, 6hlexch2 37849 . . 3 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ)) ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ (π‘…β€˜πΉ)) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ))))
221, 10, 11, 15, 19, 21syl131anc 1384 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ))))
235, 20, 6, 7, 8, 13trljat2 38633 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = (𝑃 ∨ (πΉβ€˜π‘ƒ)))
24233adant3r3 1185 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) = (𝑃 ∨ (πΉβ€˜π‘ƒ)))
2524breq2d 5118 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑄 ≀ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΉ)) ↔ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))))
2622, 25sylibd 238 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ≀ (𝑄 ∨ (π‘…β€˜πΉ)) β†’ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17084  lecple 17141  joincjn 18201  meetcmee 18202  Atomscatm 37728  HLchlt 37815  LHypclh 38450  LTrncltrn 38567  trLctrl 38624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-map 8768  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-psubsp 37969  df-pmap 37970  df-padd 38262  df-lhyp 38454  df-laut 38455  df-ldil 38570  df-ltrn 38571  df-trl 38625
This theorem is referenced by:  cdlemc4  38660
  Copyright terms: Public domain W3C validator