Proof of Theorem cdlemc3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 767 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐾 ∈ HL) | 
| 2 |  | simpl 482 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 3 |  | simpr1 1195 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐹 ∈ 𝑇) | 
| 4 |  | simpr2l 1233 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑃 ∈ 𝐴) | 
| 5 |  | cdlemc3.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | cdlemc3.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 |  | cdlemc3.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | cdlemc3.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 9 | 5, 6, 7, 8 | ltrnat 40142 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) | 
| 10 | 2, 3, 4, 9 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘𝑃) ∈ 𝐴) | 
| 11 |  | simpr3l 1235 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑄 ∈ 𝐴) | 
| 12 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 13 |  | cdlemc3.r | . . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 14 | 12, 7, 8, 13 | trlcl 40166 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) | 
| 15 | 3, 14 | syldan 591 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑅‘𝐹) ∈ (Base‘𝐾)) | 
| 16 | 5, 6, 7, 8 | ltrnel 40141 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) | 
| 17 | 16 | 3adant3r3 1185 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) | 
| 18 | 5, 6, 7, 8, 13 | trlnle 40188 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ (𝑅‘𝐹)) | 
| 19 | 2, 3, 17, 18 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ¬ (𝐹‘𝑃) ≤ (𝑅‘𝐹)) | 
| 20 |  | cdlemc3.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 21 | 12, 5, 20, 6 | hlexch2 39385 | . . 3
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) ∧ ¬ (𝐹‘𝑃) ≤ (𝑅‘𝐹)) → ((𝐹‘𝑃) ≤ (𝑄 ∨ (𝑅‘𝐹)) → 𝑄 ≤ ((𝐹‘𝑃) ∨ (𝑅‘𝐹)))) | 
| 22 | 1, 10, 11, 15, 19, 21 | syl131anc 1385 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ≤ (𝑄 ∨ (𝑅‘𝐹)) → 𝑄 ≤ ((𝐹‘𝑃) ∨ (𝑅‘𝐹)))) | 
| 23 | 5, 20, 6, 7, 8, 13 | trljat2 40169 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) | 
| 24 | 23 | 3adant3r3 1185 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) | 
| 25 | 24 | breq2d 5155 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑄 ≤ ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ↔ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)))) | 
| 26 | 22, 25 | sylibd 239 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ≤ (𝑄 ∨ (𝑅‘𝐹)) → 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)))) |