Proof of Theorem cdlemc3
Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐾 ∈ HL) |
2 | | simpl 483 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simpr1 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐹 ∈ 𝑇) |
4 | | simpr2l 1231 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
5 | | cdlemc3.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
6 | | cdlemc3.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | cdlemc3.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
8 | | cdlemc3.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
9 | 5, 6, 7, 8 | ltrnat 38154 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
10 | 2, 3, 4, 9 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘𝑃) ∈ 𝐴) |
11 | | simpr3l 1233 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
12 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
13 | | cdlemc3.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
14 | 12, 7, 8, 13 | trlcl 38178 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
15 | 3, 14 | syldan 591 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
16 | 5, 6, 7, 8 | ltrnel 38153 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
17 | 16 | 3adant3r3 1183 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
18 | 5, 6, 7, 8, 13 | trlnle 38200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ (𝑅‘𝐹)) |
19 | 2, 3, 17, 18 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ¬ (𝐹‘𝑃) ≤ (𝑅‘𝐹)) |
20 | | cdlemc3.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
21 | 12, 5, 20, 6 | hlexch2 37397 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) ∧ ¬ (𝐹‘𝑃) ≤ (𝑅‘𝐹)) → ((𝐹‘𝑃) ≤ (𝑄 ∨ (𝑅‘𝐹)) → 𝑄 ≤ ((𝐹‘𝑃) ∨ (𝑅‘𝐹)))) |
22 | 1, 10, 11, 15, 19, 21 | syl131anc 1382 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ≤ (𝑄 ∨ (𝑅‘𝐹)) → 𝑄 ≤ ((𝐹‘𝑃) ∨ (𝑅‘𝐹)))) |
23 | 5, 20, 6, 7, 8, 13 | trljat2 38181 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |
24 | 23 | 3adant3r3 1183 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |
25 | 24 | breq2d 5086 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑄 ≤ ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ↔ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)))) |
26 | 22, 25 | sylibd 238 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ≤ (𝑄 ∨ (𝑅‘𝐹)) → 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)))) |