Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc4 Structured version   Visualization version   GIF version

Theorem cdlemc4 37804
 Description: Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l = (le‘𝐾)
cdlemc3.j = (join‘𝐾)
cdlemc3.m = (meet‘𝐾)
cdlemc3.a 𝐴 = (Atoms‘𝐾)
cdlemc3.h 𝐻 = (LHyp‘𝐾)
cdlemc3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemc3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))

Proof of Theorem cdlemc4
StepHypRef Expression
1 simpll 766 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ HL)
21hllatd 36974 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ Lat)
3 simpl 486 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simpr1 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐹𝑇)
5 simpr2l 1229 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑃𝐴)
6 eqid 2758 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 cdlemc3.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
86, 7atbase 36899 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑃 ∈ (Base‘𝐾))
10 cdlemc3.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
11 cdlemc3.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
126, 10, 11ltrncl 37735 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
133, 4, 9, 12syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑃) ∈ (Base‘𝐾))
14 simpr3l 1231 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄𝐴)
15 cdlemc3.j . . . . . . . . 9 = (join‘𝐾)
166, 15, 7hlatjcl 36977 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
171, 5, 14, 16syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
186, 10lhpbase 37608 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1918ad2antlr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑊 ∈ (Base‘𝐾))
20 cdlemc3.m . . . . . . . 8 = (meet‘𝐾)
216, 20latmcl 17741 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
222, 17, 19, 21syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
23 cdlemc3.l . . . . . . 7 = (le‘𝐾)
246, 23, 15latlej1 17749 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → (𝐹𝑃) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
252, 13, 22, 24syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑃) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
26 breq2 5040 . . . . 5 ((𝑄 (𝑅𝐹)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) → ((𝐹𝑃) (𝑄 (𝑅𝐹)) ↔ (𝐹𝑃) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
2725, 26syl5ibrcom 250 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑄 (𝑅𝐹)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) → (𝐹𝑃) (𝑄 (𝑅𝐹))))
28 cdlemc3.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
2923, 15, 20, 7, 10, 11, 28cdlemc3 37803 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) (𝑄 (𝑅𝐹)) → 𝑄 (𝑃 (𝐹𝑃))))
3027, 29syld 47 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑄 (𝑅𝐹)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) → 𝑄 (𝑃 (𝐹𝑃))))
3130necon3bd 2965 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (¬ 𝑄 (𝑃 (𝐹𝑃)) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
32313impia 1114 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   class class class wbr 5036  ‘cfv 6340  (class class class)co 7156  Basecbs 16554  lecple 16643  joincjn 17633  meetcmee 17634  Latclat 17734  Atomscatm 36873  HLchlt 36960  LHypclh 37594  LTrncltrn 37711  trLctrl 37768 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-map 8424  df-proset 17617  df-poset 17635  df-plt 17647  df-lub 17663  df-glb 17664  df-join 17665  df-meet 17666  df-p0 17728  df-p1 17729  df-lat 17735  df-clat 17797  df-oposet 36786  df-ol 36788  df-oml 36789  df-covers 36876  df-ats 36877  df-atl 36908  df-cvlat 36932  df-hlat 36961  df-psubsp 37113  df-pmap 37114  df-padd 37406  df-lhyp 37598  df-laut 37599  df-ldil 37714  df-ltrn 37715  df-trl 37769 This theorem is referenced by:  cdlemc5  37805
 Copyright terms: Public domain W3C validator