Proof of Theorem cdleme2
Step | Hyp | Ref
| Expression |
1 | | cdleme1.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
2 | | cdleme1.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
3 | | cdleme1.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
4 | | cdleme1.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | cdleme1.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdleme1.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
7 | | cdleme1.f |
. . . 4
⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
8 | 1, 2, 3, 4, 5, 6, 7 | cdleme1 38168 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) = (𝑅 ∨ 𝑈)) |
9 | 8 | oveq1d 7270 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝐹) ∧ 𝑊) = ((𝑅 ∨ 𝑈) ∧ 𝑊)) |
10 | | simpll 763 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ HL) |
11 | | simpr3l 1232 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ 𝐴) |
12 | | hllat 37304 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
13 | 12 | ad2antrr 722 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ Lat) |
14 | | simpr1 1192 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
16 | 15, 4 | atbase 37230 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
17 | 14, 16 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ (Base‘𝐾)) |
18 | | simpr2 1193 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
19 | 15, 4 | atbase 37230 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ (Base‘𝐾)) |
21 | 15, 2 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
22 | 13, 17, 20, 21 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
23 | 15, 5 | lhpbase 37939 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
24 | 23 | ad2antlr 723 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) |
25 | 15, 3 | latmcl 18073 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
26 | 13, 22, 24, 25 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
27 | 6, 26 | eqeltrid 2843 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ∈ (Base‘𝐾)) |
28 | 15, 1, 3 | latmle2 18098 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
29 | 13, 22, 24, 28 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
30 | 6, 29 | eqbrtrid 5105 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ≤ 𝑊) |
31 | 15, 1, 2, 3, 4 | atmod4i2 37808 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 ≤ 𝑊) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = ((𝑅 ∨ 𝑈) ∧ 𝑊)) |
32 | 10, 11, 27, 24, 30, 31 | syl131anc 1381 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = ((𝑅 ∨ 𝑈) ∧ 𝑊)) |
33 | | eqid 2738 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
34 | 1, 3, 33, 4, 5 | lhpmat 37971 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
35 | 34 | 3ad2antr3 1188 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
36 | 35 | oveq1d 7270 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = ((0.‘𝐾) ∨ 𝑈)) |
37 | | hlol 37302 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
38 | 37 | ad2antrr 722 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ OL) |
39 | 15, 2, 33 | olj02 37167 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ 𝑈) = 𝑈) |
40 | 38, 27, 39 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((0.‘𝐾) ∨ 𝑈) = 𝑈) |
41 | 36, 40 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = 𝑈) |
42 | 9, 32, 41 | 3eqtr2d 2784 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝐹) ∧ 𝑊) = 𝑈) |