| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5397 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4559 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: unipw 5405 canth2 9071 pwfir 9242 unifpw 9282 marypha1lem 9360 infpwfidom 9957 ackbij1lem4 10151 acsfn 17596 sylow2a 19525 dissnref 23391 dissnlocfin 23392 locfindis 23393 txdis 23495 txdis1cn 23498 symgtgp 23969 1sno 27715 bday0s 27716 bday0b 27718 bday1s 27719 cutneg 27721 cutlt 27816 onscutlt 28141 n0sbday 28220 n0sfincut 28222 bdayn0p1 28234 zscut 28271 1p1e2s 28278 twocut 28285 addhalfcut 28310 dispcmp 33822 esumcst 34026 cntnevol 34191 coinflippvt 34449 onsucsuccmpi 36404 topdifinffinlem 37308 pclfinN 39867 lpirlnr 43079 unipwrVD 44794 unipwr 44795 salexct 46305 salexct3 46313 salgencntex 46314 salgensscntex 46315 sge0tsms 46351 sge0cl 46352 sge0sup 46362 isgrtri 47915 lincvalsng 48378 snlindsntor 48433 |
| Copyright terms: Public domain | W3C validator |