| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5405 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4566 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-pw 4568 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: unipw 5413 canth2 9100 pwfir 9273 unifpw 9313 marypha1lem 9391 infpwfidom 9988 ackbij1lem4 10182 acsfn 17627 sylow2a 19556 dissnref 23422 dissnlocfin 23423 locfindis 23424 txdis 23526 txdis1cn 23529 symgtgp 24000 1sno 27746 bday0s 27747 bday0b 27749 bday1s 27750 cutneg 27752 cutlt 27847 onscutlt 28172 n0sbday 28251 n0sfincut 28253 bdayn0p1 28265 zscut 28302 1p1e2s 28309 twocut 28316 addhalfcut 28341 dispcmp 33856 esumcst 34060 cntnevol 34225 coinflippvt 34483 onsucsuccmpi 36438 topdifinffinlem 37342 pclfinN 39901 lpirlnr 43113 unipwrVD 44828 unipwr 44829 salexct 46339 salexct3 46347 salgencntex 46348 salgensscntex 46349 sge0tsms 46385 sge0cl 46386 sge0sup 46396 isgrtri 47946 lincvalsng 48409 snlindsntor 48464 |
| Copyright terms: Public domain | W3C validator |