![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwg 5453 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 𝒫 cpw 4605 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pw 4607 df-sn 4632 df-pr 4634 |
This theorem is referenced by: unipw 5461 canth2 9169 pwfir 9353 unifpw 9393 marypha1lem 9471 infpwfidom 10066 ackbij1lem4 10260 acsfn 17704 sylow2a 19652 dissnref 23552 dissnlocfin 23553 locfindis 23554 txdis 23656 txdis1cn 23659 symgtgp 24130 1sno 27887 bday0s 27888 bday0b 27890 bday1s 27891 cutlt 27981 n0sbday 28369 zscut 28408 1p1e2s 28415 nohalf 28422 addhalfcut 28434 dispcmp 33820 esumcst 34044 cntnevol 34209 coinflippvt 34466 onsucsuccmpi 36426 topdifinffinlem 37330 pclfinN 39883 lpirlnr 43106 unipwrVD 44830 unipwr 44831 salexct 46290 salexct3 46298 salgencntex 46299 salgensscntex 46300 sge0tsms 46336 sge0cl 46337 sge0sup 46347 isgrtri 47848 lincvalsng 48262 snlindsntor 48317 |
Copyright terms: Public domain | W3C validator |