| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5385 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4551 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: unipw 5393 canth2 9047 pwfir 9206 unifpw 9245 marypha1lem 9323 infpwfidom 9922 ackbij1lem4 10116 acsfn 17565 sylow2a 19498 dissnref 23413 dissnlocfin 23414 locfindis 23415 txdis 23517 txdis1cn 23520 symgtgp 23991 1sno 27741 bday0s 27742 bday0b 27744 bday1s 27745 cutneg 27747 cutlt 27845 onscutlt 28170 n0sbday 28249 n0sfincut 28251 bdayn0p1 28263 zscut 28300 1p1e2s 28308 twocut 28315 addhalfcut 28347 dispcmp 33826 esumcst 34030 cntnevol 34195 coinflippvt 34453 onsucsuccmpi 36421 topdifinffinlem 37325 pclfinN 39883 lpirlnr 43094 unipwrVD 44809 unipwr 44810 salexct 46319 salexct3 46327 salgencntex 46328 salgensscntex 46329 sge0tsms 46365 sge0cl 46366 sge0sup 46376 isgrtri 47931 lincvalsng 48405 snlindsntor 48460 |
| Copyright terms: Public domain | W3C validator |