| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5382 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 𝒫 cpw 4547 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: unipw 5389 canth2 9043 pwfir 9201 unifpw 9239 marypha1lem 9317 infpwfidom 9919 ackbij1lem4 10113 acsfn 17565 sylow2a 19531 dissnref 23443 dissnlocfin 23444 locfindis 23445 txdis 23547 txdis1cn 23550 symgtgp 24021 1sno 27771 bday0s 27772 bday0b 27774 bday1s 27775 cutneg 27777 cutlt 27876 onscutlt 28201 n0sbday 28280 n0sfincut 28282 bdayn0p1 28294 zscut 28331 1p1e2s 28339 twocut 28346 addhalfcut 28379 dispcmp 33872 esumcst 34076 cntnevol 34241 coinflippvt 34498 onsucsuccmpi 36487 topdifinffinlem 37391 pclfinN 40009 lpirlnr 43220 unipwrVD 44934 unipwr 44935 salexct 46442 salexct3 46450 salgencntex 46451 salgensscntex 46452 sge0tsms 46488 sge0cl 46489 sge0sup 46499 isgrtri 48053 lincvalsng 48527 snlindsntor 48582 |
| Copyright terms: Public domain | W3C validator |