![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwg 5441 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
2 | 1 | ibi 266 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 𝒫 cpw 4601 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3952 df-in 3954 df-ss 3964 df-pw 4603 df-sn 4628 df-pr 4630 |
This theorem is referenced by: unipw 5449 canth2 9132 pwfir 9178 unifpw 9357 marypha1lem 9430 infpwfidom 10025 ackbij1lem4 10220 acsfn 17607 sylow2a 19528 dissnref 23252 dissnlocfin 23253 locfindis 23254 txdis 23356 txdis1cn 23359 symgtgp 23830 1sno 27565 bday0s 27566 bday0b 27568 bday1s 27569 cutlt 27657 dispcmp 33137 esumcst 33359 cntnevol 33524 coinflippvt 33781 onsucsuccmpi 35631 topdifinffinlem 36531 pclfinN 39074 lpirlnr 42161 unipwrVD 43895 unipwr 43896 salexct 45348 salexct3 45356 salgencntex 45357 salgensscntex 45358 sge0tsms 45394 sge0cl 45395 sge0sup 45405 lincvalsng 47184 snlindsntor 47239 |
Copyright terms: Public domain | W3C validator |