Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4741 | . 2 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
2 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | elpw 4537 | . 2 ⊢ ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 |
This theorem is referenced by: unipw 5366 canth2 8917 pwfir 8959 unifpw 9122 marypha1lem 9192 infpwfidom 9784 ackbij1lem4 9979 acsfn 17368 sylow2a 19224 dissnref 22679 dissnlocfin 22680 locfindis 22681 txdis 22783 txdis1cn 22786 symgtgp 23257 dispcmp 31809 esumcst 32031 cntnevol 32196 coinflippvt 32451 1sno 34021 bday0s 34022 bday0b 34024 bday1s 34025 onsucsuccmpi 34632 topdifinffinlem 35518 pclfinN 37914 lpirlnr 40942 unipwrVD 42452 unipwr 42453 salexct 43873 salexct3 43881 salgencntex 43882 salgensscntex 43883 sge0tsms 43918 sge0cl 43919 sge0sup 43929 lincvalsng 45757 snlindsntor 45812 |
Copyright terms: Public domain | W3C validator |