| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5397 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4559 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: unipw 5405 canth2 9071 pwfir 9242 unifpw 9282 marypha1lem 9360 infpwfidom 9957 ackbij1lem4 10151 acsfn 17600 sylow2a 19533 dissnref 23448 dissnlocfin 23449 locfindis 23450 txdis 23552 txdis1cn 23555 symgtgp 24026 1sno 27776 bday0s 27777 bday0b 27779 bday1s 27780 cutneg 27782 cutlt 27880 onscutlt 28205 n0sbday 28284 n0sfincut 28286 bdayn0p1 28298 zscut 28335 1p1e2s 28343 twocut 28350 addhalfcut 28382 dispcmp 33842 esumcst 34046 cntnevol 34211 coinflippvt 34469 onsucsuccmpi 36424 topdifinffinlem 37328 pclfinN 39887 lpirlnr 43099 unipwrVD 44814 unipwr 44815 salexct 46325 salexct3 46333 salgencntex 46334 salgensscntex 46335 sge0tsms 46371 sge0cl 46372 sge0sup 46382 isgrtri 47935 lincvalsng 48398 snlindsntor 48453 |
| Copyright terms: Public domain | W3C validator |