Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4738 | . 2 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
2 | snex 5349 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | elpw 4534 | . 2 ⊢ ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 |
This theorem is referenced by: unipw 5360 canth2 8866 pwfir 8921 unifpw 9052 marypha1lem 9122 infpwfidom 9715 ackbij1lem4 9910 acsfn 17285 sylow2a 19139 dissnref 22587 dissnlocfin 22588 locfindis 22589 txdis 22691 txdis1cn 22694 symgtgp 23165 dispcmp 31711 esumcst 31931 cntnevol 32096 coinflippvt 32351 1sno 33948 bday0s 33949 bday0b 33951 bday1s 33952 onsucsuccmpi 34559 topdifinffinlem 35445 pclfinN 37841 lpirlnr 40858 unipwrVD 42341 unipwr 42342 salexct 43763 salexct3 43771 salgencntex 43772 salgensscntex 43773 sge0tsms 43808 sge0cl 43809 sge0sup 43819 lincvalsng 45645 snlindsntor 45700 |
Copyright terms: Public domain | W3C validator |