![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwg 5443 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 𝒫 cpw 4603 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-pw 4605 df-sn 4630 df-pr 4632 |
This theorem is referenced by: unipw 5451 canth2 9130 pwfir 9176 unifpw 9355 marypha1lem 9428 infpwfidom 10023 ackbij1lem4 10218 acsfn 17603 sylow2a 19487 dissnref 23032 dissnlocfin 23033 locfindis 23034 txdis 23136 txdis1cn 23139 symgtgp 23610 1sno 27328 bday0s 27329 bday0b 27331 bday1s 27332 cutlt 27419 dispcmp 32839 esumcst 33061 cntnevol 33226 coinflippvt 33483 onsucsuccmpi 35328 topdifinffinlem 36228 pclfinN 38771 lpirlnr 41859 unipwrVD 43593 unipwr 43594 salexct 45050 salexct3 45058 salgencntex 45059 salgensscntex 45060 sge0tsms 45096 sge0cl 45097 sge0sup 45107 lincvalsng 47097 snlindsntor 47152 |
Copyright terms: Public domain | W3C validator |