| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5402 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4563 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: unipw 5410 canth2 9094 pwfir 9266 unifpw 9306 marypha1lem 9384 infpwfidom 9981 ackbij1lem4 10175 acsfn 17620 sylow2a 19549 dissnref 23415 dissnlocfin 23416 locfindis 23417 txdis 23519 txdis1cn 23522 symgtgp 23993 1sno 27739 bday0s 27740 bday0b 27742 bday1s 27743 cutneg 27745 cutlt 27840 onscutlt 28165 n0sbday 28244 n0sfincut 28246 bdayn0p1 28258 zscut 28295 1p1e2s 28302 twocut 28309 addhalfcut 28334 dispcmp 33849 esumcst 34053 cntnevol 34218 coinflippvt 34476 onsucsuccmpi 36431 topdifinffinlem 37335 pclfinN 39894 lpirlnr 43106 unipwrVD 44821 unipwr 44822 salexct 46332 salexct3 46340 salgencntex 46341 salgensscntex 46342 sge0tsms 46378 sge0cl 46379 sge0sup 46389 isgrtri 47942 lincvalsng 48405 snlindsntor 48460 |
| Copyright terms: Public domain | W3C validator |