![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwg 5442 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 𝒫 cpw 4602 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 df-pw 4604 df-sn 4629 df-pr 4631 |
This theorem is referenced by: unipw 5450 canth2 9136 pwfir 9182 unifpw 9361 marypha1lem 9434 infpwfidom 10029 ackbij1lem4 10224 acsfn 17610 sylow2a 19535 dissnref 23351 dissnlocfin 23352 locfindis 23353 txdis 23455 txdis1cn 23458 symgtgp 23929 1sno 27672 bday0s 27673 bday0b 27675 bday1s 27676 cutlt 27764 dispcmp 33302 esumcst 33524 cntnevol 33689 coinflippvt 33946 onsucsuccmpi 35791 topdifinffinlem 36691 pclfinN 39234 lpirlnr 42321 unipwrVD 44055 unipwr 44056 salexct 45508 salexct3 45516 salgencntex 45517 salgensscntex 45518 sge0tsms 45554 sge0cl 45555 sge0sup 45565 lincvalsng 47258 snlindsntor 47313 |
Copyright terms: Public domain | W3C validator |