![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version |
Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwg 5462 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 𝒫 cpw 4622 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 |
This theorem is referenced by: unipw 5470 canth2 9196 pwfir 9383 unifpw 9425 marypha1lem 9502 infpwfidom 10097 ackbij1lem4 10291 acsfn 17717 sylow2a 19661 dissnref 23557 dissnlocfin 23558 locfindis 23559 txdis 23661 txdis1cn 23664 symgtgp 24135 1sno 27890 bday0s 27891 bday0b 27893 bday1s 27894 cutlt 27984 n0sbday 28372 zscut 28411 1p1e2s 28418 nohalf 28425 addhalfcut 28437 dispcmp 33805 esumcst 34027 cntnevol 34192 coinflippvt 34449 onsucsuccmpi 36409 topdifinffinlem 37313 pclfinN 39857 lpirlnr 43074 unipwrVD 44803 unipwr 44804 salexct 46255 salexct3 46263 salgencntex 46264 salgensscntex 46265 sge0tsms 46301 sge0cl 46302 sge0sup 46312 isgrtri 47794 lincvalsng 48145 snlindsntor 48200 |
Copyright terms: Public domain | W3C validator |