| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snelpwi | Structured version Visualization version GIF version | ||
| Description: If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwg 5417 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 𝒫 cpw 4575 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-pw 4577 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: unipw 5425 canth2 9144 pwfir 9327 unifpw 9367 marypha1lem 9445 infpwfidom 10042 ackbij1lem4 10236 acsfn 17671 sylow2a 19600 dissnref 23466 dissnlocfin 23467 locfindis 23468 txdis 23570 txdis1cn 23573 symgtgp 24044 1sno 27791 bday0s 27792 bday0b 27794 bday1s 27795 cutneg 27797 cutlt 27892 onscutlt 28217 n0sbday 28296 n0sfincut 28298 bdayn0p1 28310 zscut 28347 1p1e2s 28354 twocut 28361 addhalfcut 28386 dispcmp 33890 esumcst 34094 cntnevol 34259 coinflippvt 34517 onsucsuccmpi 36461 topdifinffinlem 37365 pclfinN 39919 lpirlnr 43141 unipwrVD 44856 unipwr 44857 salexct 46363 salexct3 46371 salgencntex 46372 salgensscntex 46373 sge0tsms 46409 sge0cl 46410 sge0sup 46420 isgrtri 47955 lincvalsng 48392 snlindsntor 48447 |
| Copyright terms: Public domain | W3C validator |