MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Structured version   Visualization version   GIF version

Theorem snelpw 5456
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.ex 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.ex . 2 𝐴 ∈ V
2 snelpwg 5453 . 2 (𝐴 ∈ V → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  Vcvv 3478  𝒫 cpw 4605  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-pw 4607  df-sn 4632  df-pr 4634
This theorem is referenced by:  pwfir  9353  dis2ndc  23484  dislly  23521  n0scut  28353  n0ons  28354
  Copyright terms: Public domain W3C validator