![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpw | Structured version Visualization version GIF version |
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.) |
Ref | Expression |
---|---|
snelpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snelpw | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpw.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | snss 4502 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
3 | snex 5097 | . . 3 ⊢ {𝐴} ∈ V | |
4 | 3 | elpw 4353 | . 2 ⊢ ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵) |
5 | 2, 4 | bitr4i 270 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2157 Vcvv 3383 ⊆ wss 3767 𝒫 cpw 4347 {csn 4366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-pw 4349 df-sn 4367 df-pr 4369 |
This theorem is referenced by: dis2ndc 21588 dislly 21625 |
Copyright terms: Public domain | W3C validator |