Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snelpw | Structured version Visualization version GIF version |
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.) |
Ref | Expression |
---|---|
snelpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snelpw | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpw.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | snss 4725 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
3 | snex 5358 | . . 3 ⊢ {𝐴} ∈ V | |
4 | 3 | elpw 4543 | . 2 ⊢ ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵) |
5 | 2, 4 | bitr4i 277 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 𝒫 cpw 4539 {csn 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4568 df-pr 4570 |
This theorem is referenced by: pwfir 8950 dis2ndc 22622 dislly 22659 |
Copyright terms: Public domain | W3C validator |