MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Structured version   Visualization version   GIF version

Theorem snelpw 5449
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.ex 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.ex . 2 𝐴 ∈ V
2 snelpwg 5446 . 2 (𝐴 ∈ V → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  Vcvv 3479  𝒫 cpw 4599  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-ss 3967  df-pw 4601  df-sn 4626  df-pr 4628
This theorem is referenced by:  pwfir  9356  dis2ndc  23469  dislly  23506  n0scut  28339  n0ons  28340
  Copyright terms: Public domain W3C validator