![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpw | Structured version Visualization version GIF version |
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) |
Ref | Expression |
---|---|
snelpw.ex | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snelpw | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpw.ex | . 2 ⊢ 𝐴 ∈ V | |
2 | snelpwg 5462 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 |
This theorem is referenced by: pwfir 9383 dis2ndc 23489 dislly 23526 n0scut 28356 n0ons 28357 |
Copyright terms: Public domain | W3C validator |