MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Structured version   Visualization version   GIF version

Theorem snelpw 5465
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.ex 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.ex . 2 𝐴 ∈ V
2 snelpwg 5462 . 2 (𝐴 ∈ V → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3488  𝒫 cpw 4622  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-pw 4624  df-sn 4649  df-pr 4651
This theorem is referenced by:  pwfir  9383  dis2ndc  23489  dislly  23526  n0scut  28356  n0ons  28357
  Copyright terms: Public domain W3C validator