MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Structured version   Visualization version   GIF version

Theorem snelpw 5445
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.ex 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.ex . 2 𝐴 ∈ V
2 snelpwg 5442 . 2 (𝐴 ∈ V → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2105  Vcvv 3473  𝒫 cpw 4602  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629  df-pr 4631
This theorem is referenced by:  pwfir  9182  dis2ndc  23284  dislly  23321  n0scut  28088  n0ons  28089
  Copyright terms: Public domain W3C validator