MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Structured version   Visualization version   GIF version

Theorem snelpw 5384
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.ex 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.ex . 2 𝐴 ∈ V
2 snelpwg 5382 . 2 (𝐴 ∈ V → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  Vcvv 3436  𝒫 cpw 4547  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576
This theorem is referenced by:  pwfir  9201  dis2ndc  23375  dislly  23412  n0scut  28262  n0ons  28264
  Copyright terms: Public domain W3C validator