MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpwiOLD Structured version   Visualization version   GIF version

Theorem snelpwiOLD 5443
Description: Obsolete version of snelpwi 5442 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwiOLD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwiOLD
StepHypRef Expression
1 snssi 4810 . 2 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
2 snex 5430 . . 3 {𝐴} ∈ V
32elpw 4605 . 2 ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)
41, 3sylibr 233 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3947  𝒫 cpw 4601  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-pw 4603  df-sn 4628  df-pr 4630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator