MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpwiOLD Structured version   Visualization version   GIF version

Theorem snelpwiOLD 5448
Description: Obsolete version of snelpwi 5447 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwiOLD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwiOLD
StepHypRef Expression
1 snssi 4807 . 2 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
2 snex 5435 . . 3 {𝐴} ∈ V
32elpw 4603 . 2 ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)
41, 3sylibr 234 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3950  𝒫 cpw 4599  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-pw 4601  df-sn 4626  df-pr 4628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator