MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpwiOLD Structured version   Visualization version   GIF version

Theorem snelpwiOLD 5404
Description: Obsolete version of snelpwi 5403 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwiOLD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwiOLD
StepHypRef Expression
1 snssi 4772 . 2 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
2 snex 5391 . . 3 {𝐴} ∈ V
32elpw 4567 . 2 ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)
41, 3sylibr 234 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914  𝒫 cpw 4563  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-pw 4565  df-sn 4590  df-pr 4592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator