![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5265 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ssel 3821 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | ssel 3821 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | anim12d 602 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
5 | 4 | imim1d 82 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
6 | 5 | 2alimdv 2017 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
7 | r2al 3148 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
8 | r2al 3148 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
9 | 6, 7, 8 | 3imtr4g 288 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
10 | 1, 9 | anim12d 602 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
11 | df-so 5264 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
12 | df-so 5264 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
13 | 10, 11, 12 | 3imtr4g 288 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ w3o 1110 ∀wal 1654 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 class class class wbr 4873 Po wpo 5261 Or wor 5262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-ral 3122 df-in 3805 df-ss 3812 df-po 5263 df-so 5264 |
This theorem is referenced by: soeq2 5283 wess 5329 wereu 5338 wereu2 5339 ordunifi 8479 fisup2g 8643 fisupcl 8644 fiinf2g 8675 ordtypelem8 8699 wemapso2lem 8726 iunfictbso 9250 fin1a2lem10 9546 fin1a2lem11 9547 zornn0g 9642 ltsopi 10025 npomex 10133 fimaxre 11298 suprfinzcl 11820 isercolllem1 14772 summolem2 14824 zsum 14826 prodmolem2 15038 zprod 15040 gsumval3 18661 iccpnfhmeo 23114 xrhmeo 23115 dvgt0lem2 24165 dgrval 24383 dgrcl 24388 dgrub 24389 dgrlb 24391 aannenlem3 24484 logccv 24808 xrge0infssd 30062 infxrge0lb 30065 infxrge0glb 30066 infxrge0gelb 30067 ssnnssfz 30085 xrge0iifiso 30515 omsfval 30890 omsf 30892 oms0 30893 omssubaddlem 30895 omssubadd 30896 oddpwdc 30950 erdszelem4 31711 erdszelem8 31715 erdsze2lem1 31720 erdsze2lem2 31721 supfz 32145 inffz 32146 nomaxmo 32375 fin2so 33932 rencldnfilem 38221 fzisoeu 40305 fourierdlem36 41147 ssnn0ssfz 42967 |
Copyright terms: Public domain | W3C validator |