Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5496 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ss2ralv 3985 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
3 | 1, 2 | anim12d 608 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
4 | df-so 5495 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
5 | df-so 5495 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
6 | 3, 4, 5 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1084 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 Po wpo 5492 Or wor 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-po 5494 df-so 5495 |
This theorem is referenced by: soeq2 5516 wess 5567 wereu 5576 wereu2 5577 ordunifi 8994 fisup2g 9157 fisupcl 9158 fiinf2g 9189 ordtypelem8 9214 wemapso2lem 9241 iunfictbso 9801 fin1a2lem10 10096 fin1a2lem11 10097 zornn0g 10192 ltsopi 10575 npomex 10683 fimaxre 11849 fiminre 11852 suprfinzcl 12365 isercolllem1 15304 summolem2 15356 zsum 15358 prodmolem2 15573 zprod 15575 gsumval3 19423 iccpnfhmeo 24014 xrhmeo 24015 dvgt0lem2 25072 dgrval 25294 dgrcl 25299 dgrub 25300 dgrlb 25302 aannenlem3 25395 logccv 25723 xrge0infssd 30986 infxrge0lb 30989 infxrge0glb 30990 infxrge0gelb 30991 ssnnssfz 31010 xrge0iifiso 31787 omsfval 32161 omsf 32163 oms0 32164 omssubaddlem 32166 omssubadd 32167 oddpwdc 32221 erdszelem4 33056 erdszelem8 33060 erdsze2lem1 33065 erdsze2lem2 33066 supfz 33600 inffz 33601 nomaxmo 33828 nominmo 33829 finorwe 35480 fin2so 35691 sticksstones3 40032 rencldnfilem 40558 fzisoeu 42729 fourierdlem36 43574 ssnn0ssfz 45573 |
Copyright terms: Public domain | W3C validator |