![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5591 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ss2ralv 4053 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
3 | 1, 2 | anim12d 610 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
4 | df-so 5590 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
5 | df-so 5590 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ w3o 1087 ∀wral 3062 ⊆ wss 3949 class class class wbr 5149 Po wpo 5587 Or wor 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-in 3956 df-ss 3966 df-po 5589 df-so 5590 |
This theorem is referenced by: soeq2 5611 wess 5664 wereu 5673 wereu2 5674 ordunifi 9293 fisup2g 9463 fisupcl 9464 fiinf2g 9495 ordtypelem8 9520 wemapso2lem 9547 iunfictbso 10109 fin1a2lem10 10404 fin1a2lem11 10405 zornn0g 10500 ltsopi 10883 npomex 10991 fimaxre 12158 fiminre 12161 suprfinzcl 12676 isercolllem1 15611 summolem2 15662 zsum 15664 prodmolem2 15879 zprod 15881 gsumval3 19775 iccpnfhmeo 24461 xrhmeo 24462 dvgt0lem2 25520 dgrval 25742 dgrcl 25747 dgrub 25748 dgrlb 25750 aannenlem3 25843 logccv 26171 nomaxmo 27201 nominmo 27202 xrge0infssd 31974 infxrge0lb 31977 infxrge0glb 31978 infxrge0gelb 31979 ssnnssfz 31998 xrge0iifiso 32915 omsfval 33293 omsf 33295 oms0 33296 omssubaddlem 33298 omssubadd 33299 oddpwdc 33353 erdszelem4 34185 erdszelem8 34189 erdsze2lem1 34194 erdsze2lem2 34195 supfz 34698 inffz 34699 finorwe 36263 fin2so 36475 sticksstones3 40964 rencldnfilem 41558 fzisoeu 44010 fourierdlem36 44859 ssnn0ssfz 47025 |
Copyright terms: Public domain | W3C validator |