![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5609 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ss2ralv 4079 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
3 | 1, 2 | anim12d 608 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
4 | df-so 5608 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
5 | df-so 5608 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 Po wpo 5605 Or wor 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 df-ss 3993 df-po 5607 df-so 5608 |
This theorem is referenced by: soeq2 5630 wess 5686 wereu 5696 wereu2 5697 ordunifi 9354 fisup2g 9537 fisupcl 9538 fiinf2g 9569 ordtypelem8 9594 wemapso2lem 9621 iunfictbso 10183 fin1a2lem10 10478 fin1a2lem11 10479 zornn0g 10574 ltsopi 10957 npomex 11065 fimaxre 12239 fiminre 12242 suprfinzcl 12757 isercolllem1 15713 summolem2 15764 zsum 15766 prodmolem2 15983 zprod 15985 gsumval3 19949 iccpnfhmeo 24995 xrhmeo 24996 dvgt0lem2 26062 dgrval 26287 dgrcl 26292 dgrub 26293 dgrlb 26295 aannenlem3 26390 logccv 26723 nomaxmo 27761 nominmo 27762 xrge0infssd 32768 infxrge0lb 32771 infxrge0glb 32772 infxrge0gelb 32773 ssnnssfz 32792 xrge0iifiso 33881 omsfval 34259 omsf 34261 oms0 34262 omssubaddlem 34264 omssubadd 34265 oddpwdc 34319 erdszelem4 35162 erdszelem8 35166 erdsze2lem1 35171 erdsze2lem2 35172 supfz 35691 inffz 35692 finorwe 37348 fin2so 37567 sticksstones3 42105 rencldnfilem 42776 fzisoeu 45215 fourierdlem36 46064 ssnn0ssfz 48074 |
Copyright terms: Public domain | W3C validator |