Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5505 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ss2ralv 3989 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
4 | df-so 5504 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
5 | df-so 5504 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1085 ∀wral 3064 ⊆ wss 3887 class class class wbr 5074 Po wpo 5501 Or wor 5502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-po 5503 df-so 5504 |
This theorem is referenced by: soeq2 5525 wess 5576 wereu 5585 wereu2 5586 ordunifi 9064 fisup2g 9227 fisupcl 9228 fiinf2g 9259 ordtypelem8 9284 wemapso2lem 9311 iunfictbso 9870 fin1a2lem10 10165 fin1a2lem11 10166 zornn0g 10261 ltsopi 10644 npomex 10752 fimaxre 11919 fiminre 11922 suprfinzcl 12436 isercolllem1 15376 summolem2 15428 zsum 15430 prodmolem2 15645 zprod 15647 gsumval3 19508 iccpnfhmeo 24108 xrhmeo 24109 dvgt0lem2 25167 dgrval 25389 dgrcl 25394 dgrub 25395 dgrlb 25397 aannenlem3 25490 logccv 25818 xrge0infssd 31084 infxrge0lb 31087 infxrge0glb 31088 infxrge0gelb 31089 ssnnssfz 31108 xrge0iifiso 31885 omsfval 32261 omsf 32263 oms0 32264 omssubaddlem 32266 omssubadd 32267 oddpwdc 32321 erdszelem4 33156 erdszelem8 33160 erdsze2lem1 33165 erdsze2lem2 33166 supfz 33694 inffz 33695 nomaxmo 33901 nominmo 33902 finorwe 35553 fin2so 35764 sticksstones3 40104 rencldnfilem 40642 fzisoeu 42839 fourierdlem36 43684 ssnn0ssfz 45685 |
Copyright terms: Public domain | W3C validator |