| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5563 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4029 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5562 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5562 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3051 ⊆ wss 3926 class class class wbr 5119 Po wpo 5559 Or wor 5560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 df-ss 3943 df-po 5561 df-so 5562 |
| This theorem is referenced by: soeq2 5583 wess 5640 wereu 5650 wereu2 5651 ordunifi 9298 fisup2g 9481 fisupcl 9482 fiinf2g 9514 ordtypelem8 9539 wemapso2lem 9566 iunfictbso 10128 fin1a2lem10 10423 fin1a2lem11 10424 zornn0g 10519 ltsopi 10902 npomex 11010 fimaxre 12186 fiminre 12189 suprfinzcl 12707 isercolllem1 15681 summolem2 15732 zsum 15734 prodmolem2 15951 zprod 15953 gsumval3 19888 iccpnfhmeo 24894 xrhmeo 24895 dvgt0lem2 25960 dgrval 26185 dgrcl 26190 dgrub 26191 dgrlb 26193 aannenlem3 26290 logccv 26624 nomaxmo 27662 nominmo 27663 n0sfincut 28298 xrge0infssd 32738 infxrge0lb 32741 infxrge0glb 32742 infxrge0gelb 32743 ssnnssfz 32764 xrge0iifiso 33966 omsfval 34326 omsf 34328 oms0 34329 omssubaddlem 34331 omssubadd 34332 oddpwdc 34386 erdszelem4 35216 erdszelem8 35220 erdsze2lem1 35225 erdsze2lem2 35226 supfz 35746 inffz 35747 finorwe 37400 fin2so 37631 sticksstones3 42161 rencldnfilem 42843 fzisoeu 45329 fourierdlem36 46172 ssnn0ssfz 48324 |
| Copyright terms: Public domain | W3C validator |