![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5598 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ss2ralv 4065 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
4 | df-so 5597 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
5 | df-so 5597 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3058 ⊆ wss 3962 class class class wbr 5147 Po wpo 5594 Or wor 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 df-ss 3979 df-po 5596 df-so 5597 |
This theorem is referenced by: soeq2 5618 wess 5674 wereu 5684 wereu2 5685 ordunifi 9323 fisup2g 9505 fisupcl 9506 fiinf2g 9537 ordtypelem8 9562 wemapso2lem 9589 iunfictbso 10151 fin1a2lem10 10446 fin1a2lem11 10447 zornn0g 10542 ltsopi 10925 npomex 11033 fimaxre 12209 fiminre 12212 suprfinzcl 12729 isercolllem1 15697 summolem2 15748 zsum 15750 prodmolem2 15967 zprod 15969 gsumval3 19939 iccpnfhmeo 24989 xrhmeo 24990 dvgt0lem2 26056 dgrval 26281 dgrcl 26286 dgrub 26287 dgrlb 26289 aannenlem3 26386 logccv 26719 nomaxmo 27757 nominmo 27758 xrge0infssd 32771 infxrge0lb 32774 infxrge0glb 32775 infxrge0gelb 32776 ssnnssfz 32795 xrge0iifiso 33895 omsfval 34275 omsf 34277 oms0 34278 omssubaddlem 34280 omssubadd 34281 oddpwdc 34335 erdszelem4 35178 erdszelem8 35182 erdsze2lem1 35187 erdsze2lem2 35188 supfz 35708 inffz 35709 finorwe 37364 fin2so 37593 sticksstones3 42129 rencldnfilem 42807 fzisoeu 45250 fourierdlem36 46098 ssnn0ssfz 48193 |
Copyright terms: Public domain | W3C validator |