| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5574 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4034 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5573 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5573 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3050 ⊆ wss 3931 class class class wbr 5123 Po wpo 5570 Or wor 5571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3051 df-ss 3948 df-po 5572 df-so 5573 |
| This theorem is referenced by: soeq2 5594 wess 5651 wereu 5661 wereu2 5662 ordunifi 9308 fisup2g 9490 fisupcl 9491 fiinf2g 9522 ordtypelem8 9547 wemapso2lem 9574 iunfictbso 10136 fin1a2lem10 10431 fin1a2lem11 10432 zornn0g 10527 ltsopi 10910 npomex 11018 fimaxre 12194 fiminre 12197 suprfinzcl 12715 isercolllem1 15684 summolem2 15735 zsum 15737 prodmolem2 15954 zprod 15956 gsumval3 19894 iccpnfhmeo 24913 xrhmeo 24914 dvgt0lem2 25979 dgrval 26204 dgrcl 26209 dgrub 26210 dgrlb 26212 aannenlem3 26309 logccv 26642 nomaxmo 27680 nominmo 27681 xrge0infssd 32707 infxrge0lb 32710 infxrge0glb 32711 infxrge0gelb 32712 ssnnssfz 32733 xrge0iifiso 33909 omsfval 34271 omsf 34273 oms0 34274 omssubaddlem 34276 omssubadd 34277 oddpwdc 34331 erdszelem4 35174 erdszelem8 35178 erdsze2lem1 35183 erdsze2lem2 35184 supfz 35704 inffz 35705 finorwe 37358 fin2so 37589 sticksstones3 42124 rencldnfilem 42809 fzisoeu 45284 fourierdlem36 46130 ssnn0ssfz 48238 |
| Copyright terms: Public domain | W3C validator |