| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5529 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4001 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5528 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5528 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3048 ⊆ wss 3898 class class class wbr 5093 Po wpo 5525 Or wor 5526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3049 df-ss 3915 df-po 5527 df-so 5528 |
| This theorem is referenced by: soeq2 5549 wess 5605 wereu 5615 wereu2 5616 ordunifi 9181 fisup2g 9360 fisupcl 9361 fiinf2g 9393 ordtypelem8 9418 wemapso2lem 9445 iunfictbso 10012 fin1a2lem10 10307 fin1a2lem11 10308 zornn0g 10403 ltsopi 10786 npomex 10894 fimaxre 12073 fiminre 12076 suprfinzcl 12593 isercolllem1 15574 summolem2 15625 zsum 15627 prodmolem2 15844 zprod 15846 gsumval3 19821 iccpnfhmeo 24871 xrhmeo 24872 dvgt0lem2 25936 dgrval 26161 dgrcl 26166 dgrub 26167 dgrlb 26169 aannenlem3 26266 logccv 26600 nomaxmo 27638 nominmo 27639 n0sfincut 28283 xrge0infssd 32748 infxrge0lb 32751 infxrge0glb 32752 infxrge0gelb 32753 ssnnssfz 32774 xrge0iifiso 33969 omsfval 34328 omsf 34330 oms0 34331 omssubaddlem 34333 omssubadd 34334 oddpwdc 34388 erdszelem4 35259 erdszelem8 35263 erdsze2lem1 35268 erdsze2lem2 35269 supfz 35794 inffz 35795 finorwe 37447 fin2so 37667 sticksstones3 42261 rencldnfilem 42937 fzisoeu 45425 fourierdlem36 46265 ssnn0ssfz 48473 |
| Copyright terms: Public domain | W3C validator |