| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5548 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4017 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5547 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5547 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3044 ⊆ wss 3914 class class class wbr 5107 Po wpo 5544 Or wor 5545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 df-ss 3931 df-po 5546 df-so 5547 |
| This theorem is referenced by: soeq2 5568 wess 5624 wereu 5634 wereu2 5635 ordunifi 9237 fisup2g 9420 fisupcl 9421 fiinf2g 9453 ordtypelem8 9478 wemapso2lem 9505 iunfictbso 10067 fin1a2lem10 10362 fin1a2lem11 10363 zornn0g 10458 ltsopi 10841 npomex 10949 fimaxre 12127 fiminre 12130 suprfinzcl 12648 isercolllem1 15631 summolem2 15682 zsum 15684 prodmolem2 15901 zprod 15903 gsumval3 19837 iccpnfhmeo 24843 xrhmeo 24844 dvgt0lem2 25908 dgrval 26133 dgrcl 26138 dgrub 26139 dgrlb 26141 aannenlem3 26238 logccv 26572 nomaxmo 27610 nominmo 27611 n0sfincut 28246 xrge0infssd 32684 infxrge0lb 32687 infxrge0glb 32688 infxrge0gelb 32689 ssnnssfz 32710 xrge0iifiso 33925 omsfval 34285 omsf 34287 oms0 34288 omssubaddlem 34290 omssubadd 34291 oddpwdc 34345 erdszelem4 35181 erdszelem8 35185 erdsze2lem1 35190 erdsze2lem2 35191 supfz 35716 inffz 35717 finorwe 37370 fin2so 37601 sticksstones3 42136 rencldnfilem 42808 fzisoeu 45298 fourierdlem36 46141 ssnn0ssfz 48337 |
| Copyright terms: Public domain | W3C validator |