| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5533 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4008 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5532 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5532 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3044 ⊆ wss 3905 class class class wbr 5095 Po wpo 5529 Or wor 5530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 df-ss 3922 df-po 5531 df-so 5532 |
| This theorem is referenced by: soeq2 5553 wess 5609 wereu 5619 wereu2 5620 ordunifi 9195 fisup2g 9378 fisupcl 9379 fiinf2g 9411 ordtypelem8 9436 wemapso2lem 9463 iunfictbso 10027 fin1a2lem10 10322 fin1a2lem11 10323 zornn0g 10418 ltsopi 10801 npomex 10909 fimaxre 12087 fiminre 12090 suprfinzcl 12608 isercolllem1 15590 summolem2 15641 zsum 15643 prodmolem2 15860 zprod 15862 gsumval3 19804 iccpnfhmeo 24859 xrhmeo 24860 dvgt0lem2 25924 dgrval 26149 dgrcl 26154 dgrub 26155 dgrlb 26157 aannenlem3 26254 logccv 26588 nomaxmo 27626 nominmo 27627 n0sfincut 28269 xrge0infssd 32717 infxrge0lb 32720 infxrge0glb 32721 infxrge0gelb 32722 ssnnssfz 32743 xrge0iifiso 33901 omsfval 34261 omsf 34263 oms0 34264 omssubaddlem 34266 omssubadd 34267 oddpwdc 34321 erdszelem4 35166 erdszelem8 35170 erdsze2lem1 35175 erdsze2lem2 35176 supfz 35701 inffz 35702 finorwe 37355 fin2so 37586 sticksstones3 42121 rencldnfilem 42793 fzisoeu 45282 fourierdlem36 46125 ssnn0ssfz 48334 |
| Copyright terms: Public domain | W3C validator |