| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5526 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4005 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5525 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5525 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3047 ⊆ wss 3902 class class class wbr 5091 Po wpo 5522 Or wor 5523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 df-ss 3919 df-po 5524 df-so 5525 |
| This theorem is referenced by: soeq2 5546 wess 5602 wereu 5612 wereu2 5613 ordunifi 9174 fisup2g 9353 fisupcl 9354 fiinf2g 9386 ordtypelem8 9411 wemapso2lem 9438 iunfictbso 10002 fin1a2lem10 10297 fin1a2lem11 10298 zornn0g 10393 ltsopi 10776 npomex 10884 fimaxre 12063 fiminre 12066 suprfinzcl 12584 isercolllem1 15569 summolem2 15620 zsum 15622 prodmolem2 15839 zprod 15841 gsumval3 19817 iccpnfhmeo 24868 xrhmeo 24869 dvgt0lem2 25933 dgrval 26158 dgrcl 26163 dgrub 26164 dgrlb 26166 aannenlem3 26263 logccv 26597 nomaxmo 27635 nominmo 27636 n0sfincut 28280 xrge0infssd 32739 infxrge0lb 32742 infxrge0glb 32743 infxrge0gelb 32744 ssnnssfz 32765 xrge0iifiso 33943 omsfval 34302 omsf 34304 oms0 34305 omssubaddlem 34307 omssubadd 34308 oddpwdc 34362 erdszelem4 35226 erdszelem8 35230 erdsze2lem1 35235 erdsze2lem2 35236 supfz 35761 inffz 35762 finorwe 37415 fin2so 37646 sticksstones3 42180 rencldnfilem 42852 fzisoeu 45340 fourierdlem36 46180 ssnn0ssfz 48379 |
| Copyright terms: Public domain | W3C validator |