| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 5551 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 2 | ss2ralv 4020 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
| 4 | df-so 5550 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | df-so 5550 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∀wral 3045 ⊆ wss 3917 class class class wbr 5110 Po wpo 5547 Or wor 5548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 df-ss 3934 df-po 5549 df-so 5550 |
| This theorem is referenced by: soeq2 5571 wess 5627 wereu 5637 wereu2 5638 ordunifi 9244 fisup2g 9427 fisupcl 9428 fiinf2g 9460 ordtypelem8 9485 wemapso2lem 9512 iunfictbso 10074 fin1a2lem10 10369 fin1a2lem11 10370 zornn0g 10465 ltsopi 10848 npomex 10956 fimaxre 12134 fiminre 12137 suprfinzcl 12655 isercolllem1 15638 summolem2 15689 zsum 15691 prodmolem2 15908 zprod 15910 gsumval3 19844 iccpnfhmeo 24850 xrhmeo 24851 dvgt0lem2 25915 dgrval 26140 dgrcl 26145 dgrub 26146 dgrlb 26148 aannenlem3 26245 logccv 26579 nomaxmo 27617 nominmo 27618 n0sfincut 28253 xrge0infssd 32691 infxrge0lb 32694 infxrge0glb 32695 infxrge0gelb 32696 ssnnssfz 32717 xrge0iifiso 33932 omsfval 34292 omsf 34294 oms0 34295 omssubaddlem 34297 omssubadd 34298 oddpwdc 34352 erdszelem4 35188 erdszelem8 35192 erdsze2lem1 35197 erdsze2lem2 35198 supfz 35723 inffz 35724 finorwe 37377 fin2so 37608 sticksstones3 42143 rencldnfilem 42815 fzisoeu 45305 fourierdlem36 46148 ssnn0ssfz 48341 |
| Copyright terms: Public domain | W3C validator |