MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Visualization version   GIF version

Theorem opsrtoslem2 21963
Description: Lemma for opsrtos 21964. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem2 (𝜑𝑂 ∈ Toset)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.c . . . . . . 7 𝐶 = (𝑇 <bag 𝐼)
2 opsrtoslem.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 opsrso.i . . . . . . 7 (𝜑𝐼𝑉)
43, 3xpexd 7727 . . . . . . . 8 (𝜑 → (𝐼 × 𝐼) ∈ V)
5 opsrso.t . . . . . . . 8 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
64, 5ssexd 5279 . . . . . . 7 (𝜑𝑇 ∈ V)
7 opsrso.w . . . . . . 7 (𝜑𝑇 We 𝐼)
81, 2, 3, 6, 7ltbwe 21951 . . . . . 6 (𝜑𝐶 We 𝐷)
9 opsrso.r . . . . . . . 8 (𝜑𝑅 ∈ Toset)
10 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2729 . . . . . . . . . 10 (le‘𝑅) = (le‘𝑅)
12 opsrtoslem.q . . . . . . . . . 10 < = (lt‘𝑅)
1310, 11, 12tosso 18378 . . . . . . . . 9 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅))))
1413ibi 267 . . . . . . . 8 (𝑅 ∈ Toset → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
159, 14syl 17 . . . . . . 7 (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1615simpld 494 . . . . . 6 (𝜑< Or (Base‘𝑅))
17 opsrtoslem.ps . . . . . . . 8 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
1817opabbii 5174 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
1918wemapso 9504 . . . . . 6 ((𝐶 We 𝐷< Or (Base‘𝑅)) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷))
208, 16, 19syl2anc 584 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷))
21 opsrtoslem.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
22 opsrtoslem.b . . . . . . 7 𝐵 = (Base‘𝑆)
2321, 10, 2, 22, 3psrbas 21842 . . . . . 6 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
24 soeq2 5568 . . . . . 6 (𝐵 = ((Base‘𝑅) ↑m 𝐷) → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷)))
2523, 24syl 17 . . . . 5 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷)))
2620, 25mpbird 257 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵)
27 soinxp 5720 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
2826, 27sylib 218 . . 3 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
29 opsrso.o . . . . . . 7 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3029fvexi 6872 . . . . . 6 𝑂 ∈ V
31 opsrtoslem.l . . . . . . 7 = (le‘𝑂)
32 eqid 2729 . . . . . . 7 (lt‘𝑂) = (lt‘𝑂)
3331, 32pltfval 18290 . . . . . 6 (𝑂 ∈ V → (lt‘𝑂) = ( ∖ I ))
3430, 33ax-mp 5 . . . . 5 (lt‘𝑂) = ( ∖ I )
35 difundir 4254 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I ))
36 resss 5972 . . . . . . . . 9 ( I ↾ 𝐵) ⊆ I
37 ssdif0 4329 . . . . . . . . 9 (( I ↾ 𝐵) ⊆ I ↔ (( I ↾ 𝐵) ∖ I ) = ∅)
3836, 37mpbi 230 . . . . . . . 8 (( I ↾ 𝐵) ∖ I ) = ∅
3938uneq2i 4128 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅)
40 un0 4357 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4135, 39, 403eqtri 2756 . . . . . 6 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4229, 3, 9, 5, 7, 21, 22, 12, 1, 2, 17, 31opsrtoslem1 21962 . . . . . . 7 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
4342difeq1d 4088 . . . . . 6 (𝜑 → ( ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ))
44 relinxp 5777 . . . . . . . . . 10 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))
4544a1i 11 . . . . . . . . 9 (𝜑 → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
46 df-br 5108 . . . . . . . . . . . . 13 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
47 vex 3451 . . . . . . . . . . . . . 14 𝑏 ∈ V
4847ideq 5816 . . . . . . . . . . . . 13 (𝑎 I 𝑏𝑎 = 𝑏)
4946, 48bitr3i 277 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
50 brin 5159 . . . . . . . . . . . . . . . . 17 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{⟨𝑥, 𝑦⟩ ∣ 𝜓}𝑎𝑎(𝐵 × 𝐵)𝑎))
5150simprbi 496 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎(𝐵 × 𝐵)𝑎)
52 brxp 5687 . . . . . . . . . . . . . . . . 17 (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎𝐵𝑎𝐵))
5352simprbi 496 . . . . . . . . . . . . . . . 16 (𝑎(𝐵 × 𝐵)𝑎𝑎𝐵)
5451, 53syl 17 . . . . . . . . . . . . . . 15 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎𝐵)
55 sonr 5570 . . . . . . . . . . . . . . . 16 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵𝑎𝐵) → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
5655ex 412 . . . . . . . . . . . . . . 15 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎𝐵 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
5728, 54, 56syl2im 40 . . . . . . . . . . . . . 14 (𝜑 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
5857pm2.01d 190 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
59 breq2 5111 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏))
60 df-br 5108 . . . . . . . . . . . . . . 15 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
6159, 60bitrdi 287 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6261notbid 318 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6358, 62syl5ibcom 245 . . . . . . . . . . . 12 (𝜑 → (𝑎 = 𝑏 → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6449, 63biimtrid 242 . . . . . . . . . . 11 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ I → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6564con2d 134 . . . . . . . . . 10 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
66 opex 5424 . . . . . . . . . . 11 𝑎, 𝑏⟩ ∈ V
67 eldif 3924 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ (⟨𝑎, 𝑏⟩ ∈ V ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
6866, 67mpbiran 709 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ I )
6965, 68imbitrrdi 252 . . . . . . . . 9 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ⟨𝑎, 𝑏⟩ ∈ (V ∖ I )))
7045, 69relssdv 5751 . . . . . . . 8 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
71 disj2 4421 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
7270, 71sylibr 234 . . . . . . 7 (𝜑 → (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅)
73 disj3 4417 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
7472, 73sylib 218 . . . . . 6 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
7541, 43, 743eqtr4a 2790 . . . . 5 (𝜑 → ( ∖ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
7634, 75eqtrid 2776 . . . 4 (𝜑 → (lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
7721, 29, 5opsrbas 21957 . . . . 5 (𝜑 → (Base‘𝑆) = (Base‘𝑂))
7822, 77eqtr2id 2777 . . . 4 (𝜑 → (Base‘𝑂) = 𝐵)
7976, 78soeq12d 5569 . . 3 (𝜑 → ((lt‘𝑂) Or (Base‘𝑂) ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8028, 79mpbird 257 . 2 (𝜑 → (lt‘𝑂) Or (Base‘𝑂))
8178reseq2d 5950 . . . 4 (𝜑 → ( I ↾ (Base‘𝑂)) = ( I ↾ 𝐵))
82 ssun2 4142 . . . 4 ( I ↾ 𝐵) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
8381, 82eqsstrdi 3991 . . 3 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
8483, 42sseqtrrd 3984 . 2 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ )
85 eqid 2729 . . . 4 (Base‘𝑂) = (Base‘𝑂)
8685, 31, 32tosso 18378 . . 3 (𝑂 ∈ V → (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ )))
8730, 86ax-mp 5 . 2 (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ ))
8880, 84, 87sylanbrc 583 1 (𝜑𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  cop 4595   class class class wbr 5107  {copab 5169   I cid 5532   Or wor 5545   We wwe 5590   × cxp 5636  ccnv 5637  cres 5640  cima 5641  Rel wrel 5643  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  lecple 17227  ltcplt 18269  Tosetctos 18375   mPwSer cmps 21813   <bag cltb 21816   ordPwSer copws 21817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-cnf 9615  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-ple 17240  df-proset 18255  df-poset 18274  df-plt 18289  df-toset 18376  df-psr 21818  df-ltbag 21821  df-opsr 21822
This theorem is referenced by:  opsrtos  21964
  Copyright terms: Public domain W3C validator