Step | Hyp | Ref
| Expression |
1 | | opsrtoslem.d |
. . . . . . . 8
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
2 | | ovex 6911 |
. . . . . . . 8
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
3 | 1, 2 | rabex2 5010 |
. . . . . . 7
⊢ 𝐷 ∈ V |
4 | | opsrtoslem.c |
. . . . . . . 8
⊢ 𝐶 = (𝑇 <bag 𝐼) |
5 | | opsrso.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
6 | | xpexg 7195 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → (𝐼 × 𝐼) ∈ V) |
7 | 5, 5, 6 | syl2anc 580 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × 𝐼) ∈ V) |
8 | | opsrso.t |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
9 | 7, 8 | ssexd 5001 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ V) |
10 | | opsrso.w |
. . . . . . . 8
⊢ (𝜑 → 𝑇 We 𝐼) |
11 | 4, 1, 5, 9, 10 | ltbwe 19794 |
. . . . . . 7
⊢ (𝜑 → 𝐶 We 𝐷) |
12 | | opsrso.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Toset) |
13 | | eqid 2800 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
14 | | eqid 2800 |
. . . . . . . . . . 11
⊢
(le‘𝑅) =
(le‘𝑅) |
15 | | opsrtoslem.q |
. . . . . . . . . . 11
⊢ < =
(lt‘𝑅) |
16 | 13, 14, 15 | tosso 17350 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or
(Base‘𝑅) ∧ ( I
↾ (Base‘𝑅))
⊆ (le‘𝑅)))) |
17 | 16 | ibi 259 |
. . . . . . . . 9
⊢ (𝑅 ∈ Toset → ( < Or
(Base‘𝑅) ∧ ( I
↾ (Base‘𝑅))
⊆ (le‘𝑅))) |
18 | 12, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾
(Base‘𝑅)) ⊆
(le‘𝑅))) |
19 | 18 | simpld 489 |
. . . . . . 7
⊢ (𝜑 → < Or (Base‘𝑅)) |
20 | | opsrtoslem.ps |
. . . . . . . . 9
⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
21 | 20 | opabbii 4911 |
. . . . . . . 8
⊢
{〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
22 | 21 | wemapso 8699 |
. . . . . . 7
⊢ ((𝐷 ∈ V ∧ 𝐶 We 𝐷 ∧ < Or (Base‘𝑅)) → {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)) |
23 | 3, 11, 19, 22 | mp3an2i 1591 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)) |
24 | | opsrtoslem.s |
. . . . . . . 8
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
25 | | opsrtoslem.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
26 | 24, 13, 1, 25, 5 | psrbas 19700 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 𝐷)) |
27 | | soeq2 5254 |
. . . . . . 7
⊢ (𝐵 = ((Base‘𝑅) ↑𝑚
𝐷) → ({〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))) |
28 | 26, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))) |
29 | 23, 28 | mpbird 249 |
. . . . 5
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵) |
30 | | soinxp 5389 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵 ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵) |
31 | 29, 30 | sylib 210 |
. . . 4
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵) |
32 | | opsrso.o |
. . . . . . . 8
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
33 | 32 | fvexi 6426 |
. . . . . . 7
⊢ 𝑂 ∈ V |
34 | | opsrtoslem.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝑂) |
35 | | eqid 2800 |
. . . . . . . 8
⊢
(lt‘𝑂) =
(lt‘𝑂) |
36 | 34, 35 | pltfval 17273 |
. . . . . . 7
⊢ (𝑂 ∈ V → (lt‘𝑂) = ( ≤ ∖ I
)) |
37 | 33, 36 | ax-mp 5 |
. . . . . 6
⊢
(lt‘𝑂) = (
≤
∖ I ) |
38 | | difundir 4082 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) |
39 | | resss 5633 |
. . . . . . . . . 10
⊢ ( I
↾ 𝐵) ⊆
I |
40 | | ssdif0 4143 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐵) ⊆ I ↔
(( I ↾ 𝐵) ∖ I )
= ∅) |
41 | 39, 40 | mpbi 222 |
. . . . . . . . 9
⊢ (( I
↾ 𝐵) ∖ I ) =
∅ |
42 | 41 | uneq2i 3963 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪
∅) |
43 | | un0 4164 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) =
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) |
44 | 38, 42, 43 | 3eqtri 2826 |
. . . . . . 7
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) |
45 | 32, 5, 12, 8, 10, 24, 25, 15, 4, 1, 20, 34 | opsrtoslem1 19805 |
. . . . . . . 8
⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) |
46 | 45 | difeq1d 3926 |
. . . . . . 7
⊢ (𝜑 → ( ≤ ∖ I ) =
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I )) |
47 | | inss2 4030 |
. . . . . . . . . . . 12
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) |
48 | | relxp 5331 |
. . . . . . . . . . . 12
⊢ Rel
(𝐵 × 𝐵) |
49 | | relss 5412 |
. . . . . . . . . . . 12
⊢
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
50 | 47, 48, 49 | mp2 9 |
. . . . . . . . . . 11
⊢ Rel
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) |
51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → Rel ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
52 | | df-br 4845 |
. . . . . . . . . . . . . 14
⊢ (𝑎 I 𝑏 ↔ 〈𝑎, 𝑏〉 ∈ I ) |
53 | | vex 3389 |
. . . . . . . . . . . . . . 15
⊢ 𝑏 ∈ V |
54 | 53 | ideq 5479 |
. . . . . . . . . . . . . 14
⊢ (𝑎 I 𝑏 ↔ 𝑎 = 𝑏) |
55 | 52, 54 | bitr3i 269 |
. . . . . . . . . . . . 13
⊢
(〈𝑎, 𝑏〉 ∈ I ↔ 𝑎 = 𝑏) |
56 | | brin 4896 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{〈𝑥, 𝑦〉 ∣ 𝜓}𝑎 ∧ 𝑎(𝐵 × 𝐵)𝑎)) |
57 | 56 | simprbi 491 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → 𝑎(𝐵 × 𝐵)𝑎) |
58 | | brxp 5359 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵)) |
59 | 58 | simprbi 491 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎(𝐵 × 𝐵)𝑎 → 𝑎 ∈ 𝐵) |
60 | 57, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → 𝑎 ∈ 𝐵) |
61 | | sonr 5255 |
. . . . . . . . . . . . . . . . 17
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 ∧ 𝑎 ∈ 𝐵) → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎) |
62 | 61 | ex 402 |
. . . . . . . . . . . . . . . 16
⊢
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎 ∈ 𝐵 → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)) |
63 | 31, 60, 62 | syl2im 40 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)) |
64 | 63 | pm2.01d 182 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎) |
65 | | breq2 4848 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑏 → (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏)) |
66 | | df-br 4845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
67 | 65, 66 | syl6bb 279 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
68 | 67 | notbid 310 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
69 | 64, 68 | syl5ibcom 237 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑎 = 𝑏 → ¬ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
70 | 55, 69 | syl5bi 234 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈𝑎, 𝑏〉 ∈ I → ¬ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
71 | 70 | con2d 132 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ 〈𝑎, 𝑏〉 ∈ I )) |
72 | | opex 5124 |
. . . . . . . . . . . 12
⊢
〈𝑎, 𝑏〉 ∈ V |
73 | | eldif 3780 |
. . . . . . . . . . . 12
⊢
(〈𝑎, 𝑏〉 ∈ (V ∖ I )
↔ (〈𝑎, 𝑏〉 ∈ V ∧ ¬
〈𝑎, 𝑏〉 ∈ I )) |
74 | 72, 73 | mpbiran 701 |
. . . . . . . . . . 11
⊢
(〈𝑎, 𝑏〉 ∈ (V ∖ I )
↔ ¬ 〈𝑎, 𝑏〉 ∈ I
) |
75 | 71, 74 | syl6ibr 244 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) → 〈𝑎, 𝑏〉 ∈ (V ∖ I
))) |
76 | 51, 75 | relssdv 5417 |
. . . . . . . . 9
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I )) |
77 | | disj2 4221 |
. . . . . . . . 9
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I )) |
78 | 76, 77 | sylibr 226 |
. . . . . . . 8
⊢ (𝜑 → (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅) |
79 | | disj3 4217 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )) |
80 | 78, 79 | sylib 210 |
. . . . . . 7
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )) |
81 | 44, 46, 80 | 3eqtr4a 2860 |
. . . . . 6
⊢ (𝜑 → ( ≤ ∖ I ) =
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
82 | 37, 81 | syl5eq 2846 |
. . . . 5
⊢ (𝜑 → (lt‘𝑂) = ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
83 | | soeq1 5253 |
. . . . 5
⊢
((lt‘𝑂) =
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ((lt‘𝑂) Or 𝐵 ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)) |
84 | 82, 83 | syl 17 |
. . . 4
⊢ (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)) |
85 | 31, 84 | mpbird 249 |
. . 3
⊢ (𝜑 → (lt‘𝑂) Or 𝐵) |
86 | 24, 32, 8 | opsrbas 19800 |
. . . . 5
⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) |
87 | 25, 86 | syl5eq 2846 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
88 | | soeq2 5254 |
. . . 4
⊢ (𝐵 = (Base‘𝑂) → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂))) |
89 | 87, 88 | syl 17 |
. . 3
⊢ (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂))) |
90 | 85, 89 | mpbid 224 |
. 2
⊢ (𝜑 → (lt‘𝑂) Or (Base‘𝑂)) |
91 | 87 | reseq2d 5601 |
. . . 4
⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾
(Base‘𝑂))) |
92 | | ssun2 3976 |
. . . 4
⊢ ( I
↾ 𝐵) ⊆
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) |
93 | 91, 92 | syl6eqssr 3853 |
. . 3
⊢ (𝜑 → ( I ↾
(Base‘𝑂)) ⊆
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) |
94 | 93, 45 | sseqtr4d 3839 |
. 2
⊢ (𝜑 → ( I ↾
(Base‘𝑂)) ⊆
≤
) |
95 | | eqid 2800 |
. . . 4
⊢
(Base‘𝑂) =
(Base‘𝑂) |
96 | 95, 34, 35 | tosso 17350 |
. . 3
⊢ (𝑂 ∈ V → (𝑂 ∈ Toset ↔
((lt‘𝑂) Or
(Base‘𝑂) ∧ ( I
↾ (Base‘𝑂))
⊆ ≤ ))) |
97 | 33, 96 | ax-mp 5 |
. 2
⊢ (𝑂 ∈ Toset ↔
((lt‘𝑂) Or
(Base‘𝑂) ∧ ( I
↾ (Base‘𝑂))
⊆ ≤ )) |
98 | 90, 94, 97 | sylanbrc 579 |
1
⊢ (𝜑 → 𝑂 ∈ Toset) |