MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Visualization version   GIF version

Theorem opsrtoslem2 21173
Description: Lemma for opsrtos 21174. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem2 (𝜑𝑂 ∈ Toset)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.c . . . . . . . 8 𝐶 = (𝑇 <bag 𝐼)
2 opsrtoslem.d . . . . . . . 8 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 opsrso.i . . . . . . . 8 (𝜑𝐼𝑉)
43, 3xpexd 7579 . . . . . . . . 9 (𝜑 → (𝐼 × 𝐼) ∈ V)
5 opsrso.t . . . . . . . . 9 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
64, 5ssexd 5243 . . . . . . . 8 (𝜑𝑇 ∈ V)
7 opsrso.w . . . . . . . 8 (𝜑𝑇 We 𝐼)
81, 2, 3, 6, 7ltbwe 21155 . . . . . . 7 (𝜑𝐶 We 𝐷)
9 opsrso.r . . . . . . . . 9 (𝜑𝑅 ∈ Toset)
10 eqid 2738 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2738 . . . . . . . . . . 11 (le‘𝑅) = (le‘𝑅)
12 opsrtoslem.q . . . . . . . . . . 11 < = (lt‘𝑅)
1310, 11, 12tosso 18052 . . . . . . . . . 10 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅))))
1413ibi 266 . . . . . . . . 9 (𝑅 ∈ Toset → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
159, 14syl 17 . . . . . . . 8 (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1615simpld 494 . . . . . . 7 (𝜑< Or (Base‘𝑅))
17 opsrtoslem.ps . . . . . . . . 9 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
1817opabbii 5137 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
1918wemapso 9240 . . . . . . 7 ((𝐶 We 𝐷< Or (Base‘𝑅)) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷))
208, 16, 19syl2anc 583 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷))
21 opsrtoslem.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
22 opsrtoslem.b . . . . . . . 8 𝐵 = (Base‘𝑆)
2321, 10, 2, 22, 3psrbas 21057 . . . . . . 7 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
24 soeq2 5516 . . . . . . 7 (𝐵 = ((Base‘𝑅) ↑m 𝐷) → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷)))
2523, 24syl 17 . . . . . 6 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷)))
2620, 25mpbird 256 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵)
27 soinxp 5659 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
2826, 27sylib 217 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
29 opsrso.o . . . . . . . 8 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3029fvexi 6770 . . . . . . 7 𝑂 ∈ V
31 opsrtoslem.l . . . . . . . 8 = (le‘𝑂)
32 eqid 2738 . . . . . . . 8 (lt‘𝑂) = (lt‘𝑂)
3331, 32pltfval 17964 . . . . . . 7 (𝑂 ∈ V → (lt‘𝑂) = ( ∖ I ))
3430, 33ax-mp 5 . . . . . 6 (lt‘𝑂) = ( ∖ I )
35 difundir 4211 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I ))
36 resss 5905 . . . . . . . . . 10 ( I ↾ 𝐵) ⊆ I
37 ssdif0 4294 . . . . . . . . . 10 (( I ↾ 𝐵) ⊆ I ↔ (( I ↾ 𝐵) ∖ I ) = ∅)
3836, 37mpbi 229 . . . . . . . . 9 (( I ↾ 𝐵) ∖ I ) = ∅
3938uneq2i 4090 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅)
40 un0 4321 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4135, 39, 403eqtri 2770 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4229, 3, 9, 5, 7, 21, 22, 12, 1, 2, 17, 31opsrtoslem1 21172 . . . . . . . 8 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
4342difeq1d 4052 . . . . . . 7 (𝜑 → ( ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ))
44 relinxp 5713 . . . . . . . . . . 11 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))
4544a1i 11 . . . . . . . . . 10 (𝜑 → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
46 df-br 5071 . . . . . . . . . . . . . 14 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
47 vex 3426 . . . . . . . . . . . . . . 15 𝑏 ∈ V
4847ideq 5750 . . . . . . . . . . . . . 14 (𝑎 I 𝑏𝑎 = 𝑏)
4946, 48bitr3i 276 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
50 brin 5122 . . . . . . . . . . . . . . . . . 18 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{⟨𝑥, 𝑦⟩ ∣ 𝜓}𝑎𝑎(𝐵 × 𝐵)𝑎))
5150simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎(𝐵 × 𝐵)𝑎)
52 brxp 5627 . . . . . . . . . . . . . . . . . 18 (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎𝐵𝑎𝐵))
5352simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑎(𝐵 × 𝐵)𝑎𝑎𝐵)
5451, 53syl 17 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎𝐵)
55 sonr 5517 . . . . . . . . . . . . . . . . 17 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵𝑎𝐵) → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
5655ex 412 . . . . . . . . . . . . . . . 16 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎𝐵 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
5728, 54, 56syl2im 40 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
5857pm2.01d 189 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
59 breq2 5074 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏))
60 df-br 5071 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
6159, 60bitrdi 286 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6261notbid 317 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6358, 62syl5ibcom 244 . . . . . . . . . . . . 13 (𝜑 → (𝑎 = 𝑏 → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6449, 63syl5bi 241 . . . . . . . . . . . 12 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ I → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6564con2d 134 . . . . . . . . . . 11 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
66 opex 5373 . . . . . . . . . . . 12 𝑎, 𝑏⟩ ∈ V
67 eldif 3893 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ (⟨𝑎, 𝑏⟩ ∈ V ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
6866, 67mpbiran 705 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ I )
6965, 68syl6ibr 251 . . . . . . . . . 10 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ⟨𝑎, 𝑏⟩ ∈ (V ∖ I )))
7045, 69relssdv 5687 . . . . . . . . 9 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
71 disj2 4388 . . . . . . . . 9 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
7270, 71sylibr 233 . . . . . . . 8 (𝜑 → (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅)
73 disj3 4384 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
7472, 73sylib 217 . . . . . . 7 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
7541, 43, 743eqtr4a 2805 . . . . . 6 (𝜑 → ( ∖ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
7634, 75eqtrid 2790 . . . . 5 (𝜑 → (lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
77 soeq1 5515 . . . . 5 ((lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
7876, 77syl 17 . . . 4 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
7928, 78mpbird 256 . . 3 (𝜑 → (lt‘𝑂) Or 𝐵)
8021, 29, 5opsrbas 21162 . . . . 5 (𝜑 → (Base‘𝑆) = (Base‘𝑂))
8122, 80eqtrid 2790 . . . 4 (𝜑𝐵 = (Base‘𝑂))
82 soeq2 5516 . . . 4 (𝐵 = (Base‘𝑂) → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
8381, 82syl 17 . . 3 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
8479, 83mpbid 231 . 2 (𝜑 → (lt‘𝑂) Or (Base‘𝑂))
8581reseq2d 5880 . . . 4 (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘𝑂)))
86 ssun2 4103 . . . 4 ( I ↾ 𝐵) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
8785, 86eqsstrrdi 3972 . . 3 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
8887, 42sseqtrrd 3958 . 2 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ )
89 eqid 2738 . . . 4 (Base‘𝑂) = (Base‘𝑂)
9089, 31, 32tosso 18052 . . 3 (𝑂 ∈ V → (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ )))
9130, 90ax-mp 5 . 2 (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ ))
9284, 88, 91sylanbrc 582 1 (𝜑𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  cop 4564   class class class wbr 5070  {copab 5132   I cid 5479   Or wor 5493   We wwe 5534   × cxp 5578  ccnv 5579  cres 5582  cima 5583  Rel wrel 5585  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cn 11903  0cn0 12163  Basecbs 16840  lecple 16895  ltcplt 17941  Tosetctos 18049   mPwSer cmps 21017   <bag cltb 21020   ordPwSer copws 21021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050  df-psr 21022  df-ltbag 21025  df-opsr 21026
This theorem is referenced by:  opsrtos  21174
  Copyright terms: Public domain W3C validator