Step | Hyp | Ref
| Expression |
1 | | opsrtoslem.c |
. . . . . . . 8
⊢ 𝐶 = (𝑇 <bag 𝐼) |
2 | | opsrtoslem.d |
. . . . . . . 8
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
3 | | opsrso.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
4 | 3, 3 | xpexd 7579 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × 𝐼) ∈ V) |
5 | | opsrso.t |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
6 | 4, 5 | ssexd 5243 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ V) |
7 | | opsrso.w |
. . . . . . . 8
⊢ (𝜑 → 𝑇 We 𝐼) |
8 | 1, 2, 3, 6, 7 | ltbwe 21155 |
. . . . . . 7
⊢ (𝜑 → 𝐶 We 𝐷) |
9 | | opsrso.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Toset) |
10 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
11 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(le‘𝑅) =
(le‘𝑅) |
12 | | opsrtoslem.q |
. . . . . . . . . . 11
⊢ < =
(lt‘𝑅) |
13 | 10, 11, 12 | tosso 18052 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or
(Base‘𝑅) ∧ ( I
↾ (Base‘𝑅))
⊆ (le‘𝑅)))) |
14 | 13 | ibi 266 |
. . . . . . . . 9
⊢ (𝑅 ∈ Toset → ( < Or
(Base‘𝑅) ∧ ( I
↾ (Base‘𝑅))
⊆ (le‘𝑅))) |
15 | 9, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾
(Base‘𝑅)) ⊆
(le‘𝑅))) |
16 | 15 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → < Or (Base‘𝑅)) |
17 | | opsrtoslem.ps |
. . . . . . . . 9
⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
18 | 17 | opabbii 5137 |
. . . . . . . 8
⊢
{〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
19 | 18 | wemapso 9240 |
. . . . . . 7
⊢ ((𝐶 We 𝐷 ∧ < Or (Base‘𝑅)) → {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷)) |
20 | 8, 16, 19 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷)) |
21 | | opsrtoslem.s |
. . . . . . . 8
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
22 | | opsrtoslem.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
23 | 21, 10, 2, 22, 3 | psrbas 21057 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m 𝐷)) |
24 | | soeq2 5516 |
. . . . . . 7
⊢ (𝐵 = ((Base‘𝑅) ↑m 𝐷) → ({〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷))) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ 𝜓} Or ((Base‘𝑅) ↑m 𝐷))) |
26 | 20, 25 | mpbird 256 |
. . . . 5
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵) |
27 | | soinxp 5659 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} Or 𝐵 ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵) |
28 | 26, 27 | sylib 217 |
. . . 4
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵) |
29 | | opsrso.o |
. . . . . . . 8
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
30 | 29 | fvexi 6770 |
. . . . . . 7
⊢ 𝑂 ∈ V |
31 | | opsrtoslem.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝑂) |
32 | | eqid 2738 |
. . . . . . . 8
⊢
(lt‘𝑂) =
(lt‘𝑂) |
33 | 31, 32 | pltfval 17964 |
. . . . . . 7
⊢ (𝑂 ∈ V → (lt‘𝑂) = ( ≤ ∖ I
)) |
34 | 30, 33 | ax-mp 5 |
. . . . . 6
⊢
(lt‘𝑂) = (
≤
∖ I ) |
35 | | difundir 4211 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) |
36 | | resss 5905 |
. . . . . . . . . 10
⊢ ( I
↾ 𝐵) ⊆
I |
37 | | ssdif0 4294 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐵) ⊆ I ↔
(( I ↾ 𝐵) ∖ I )
= ∅) |
38 | 36, 37 | mpbi 229 |
. . . . . . . . 9
⊢ (( I
↾ 𝐵) ∖ I ) =
∅ |
39 | 38 | uneq2i 4090 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪
∅) |
40 | | un0 4321 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) =
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) |
41 | 35, 39, 40 | 3eqtri 2770 |
. . . . . . 7
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) |
42 | 29, 3, 9, 5, 7, 21,
22, 12, 1, 2, 17, 31 | opsrtoslem1 21172 |
. . . . . . . 8
⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) |
43 | 42 | difeq1d 4052 |
. . . . . . 7
⊢ (𝜑 → ( ≤ ∖ I ) =
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I )) |
44 | | relinxp 5713 |
. . . . . . . . . . 11
⊢ Rel
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) |
45 | 44 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → Rel ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
46 | | df-br 5071 |
. . . . . . . . . . . . . 14
⊢ (𝑎 I 𝑏 ↔ 〈𝑎, 𝑏〉 ∈ I ) |
47 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑏 ∈ V |
48 | 47 | ideq 5750 |
. . . . . . . . . . . . . 14
⊢ (𝑎 I 𝑏 ↔ 𝑎 = 𝑏) |
49 | 46, 48 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(〈𝑎, 𝑏〉 ∈ I ↔ 𝑎 = 𝑏) |
50 | | brin 5122 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{〈𝑥, 𝑦〉 ∣ 𝜓}𝑎 ∧ 𝑎(𝐵 × 𝐵)𝑎)) |
51 | 50 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → 𝑎(𝐵 × 𝐵)𝑎) |
52 | | brxp 5627 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵)) |
53 | 52 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎(𝐵 × 𝐵)𝑎 → 𝑎 ∈ 𝐵) |
54 | 51, 53 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → 𝑎 ∈ 𝐵) |
55 | | sonr 5517 |
. . . . . . . . . . . . . . . . 17
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 ∧ 𝑎 ∈ 𝐵) → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎) |
56 | 55 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎 ∈ 𝐵 → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)) |
57 | 28, 54, 56 | syl2im 40 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)) |
58 | 57 | pm2.01d 189 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎) |
59 | | breq2 5074 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑏 → (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏)) |
60 | | df-br 5071 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
61 | 59, 60 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
62 | 61 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (¬ 𝑎({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
63 | 58, 62 | syl5ibcom 244 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑎 = 𝑏 → ¬ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
64 | 49, 63 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈𝑎, 𝑏〉 ∈ I → ¬ 〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)))) |
65 | 64 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ 〈𝑎, 𝑏〉 ∈ I )) |
66 | | opex 5373 |
. . . . . . . . . . . 12
⊢
〈𝑎, 𝑏〉 ∈ V |
67 | | eldif 3893 |
. . . . . . . . . . . 12
⊢
(〈𝑎, 𝑏〉 ∈ (V ∖ I )
↔ (〈𝑎, 𝑏〉 ∈ V ∧ ¬
〈𝑎, 𝑏〉 ∈ I )) |
68 | 66, 67 | mpbiran 705 |
. . . . . . . . . . 11
⊢
(〈𝑎, 𝑏〉 ∈ (V ∖ I )
↔ ¬ 〈𝑎, 𝑏〉 ∈ I
) |
69 | 65, 68 | syl6ibr 251 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑎, 𝑏〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) → 〈𝑎, 𝑏〉 ∈ (V ∖ I
))) |
70 | 45, 69 | relssdv 5687 |
. . . . . . . . 9
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I )) |
71 | | disj2 4388 |
. . . . . . . . 9
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I )) |
72 | 70, 71 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅) |
73 | | disj3 4384 |
. . . . . . . 8
⊢
((({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )) |
74 | 72, 73 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )) |
75 | 41, 43, 74 | 3eqtr4a 2805 |
. . . . . 6
⊢ (𝜑 → ( ≤ ∖ I ) =
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
76 | 34, 75 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → (lt‘𝑂) = ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵))) |
77 | | soeq1 5515 |
. . . . 5
⊢
((lt‘𝑂) =
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ((lt‘𝑂) Or 𝐵 ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)) |
78 | 76, 77 | syl 17 |
. . . 4
⊢ (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)) |
79 | 28, 78 | mpbird 256 |
. . 3
⊢ (𝜑 → (lt‘𝑂) Or 𝐵) |
80 | 21, 29, 5 | opsrbas 21162 |
. . . . 5
⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) |
81 | 22, 80 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
82 | | soeq2 5516 |
. . . 4
⊢ (𝐵 = (Base‘𝑂) → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂))) |
83 | 81, 82 | syl 17 |
. . 3
⊢ (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂))) |
84 | 79, 83 | mpbid 231 |
. 2
⊢ (𝜑 → (lt‘𝑂) Or (Base‘𝑂)) |
85 | 81 | reseq2d 5880 |
. . . 4
⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾
(Base‘𝑂))) |
86 | | ssun2 4103 |
. . . 4
⊢ ( I
↾ 𝐵) ⊆
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) |
87 | 85, 86 | eqsstrrdi 3972 |
. . 3
⊢ (𝜑 → ( I ↾
(Base‘𝑂)) ⊆
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) |
88 | 87, 42 | sseqtrrd 3958 |
. 2
⊢ (𝜑 → ( I ↾
(Base‘𝑂)) ⊆
≤
) |
89 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑂) =
(Base‘𝑂) |
90 | 89, 31, 32 | tosso 18052 |
. . 3
⊢ (𝑂 ∈ V → (𝑂 ∈ Toset ↔
((lt‘𝑂) Or
(Base‘𝑂) ∧ ( I
↾ (Base‘𝑂))
⊆ ≤ ))) |
91 | 30, 90 | ax-mp 5 |
. 2
⊢ (𝑂 ∈ Toset ↔
((lt‘𝑂) Or
(Base‘𝑂) ∧ ( I
↾ (Base‘𝑂))
⊆ ≤ )) |
92 | 84, 88, 91 | sylanbrc 582 |
1
⊢ (𝜑 → 𝑂 ∈ Toset) |