MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Visualization version   GIF version

Theorem opsrtoslem2 21617
Description: Lemma for opsrtos 21618. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
opsrso.i (πœ‘ β†’ 𝐼 ∈ 𝑉)
opsrso.r (πœ‘ β†’ 𝑅 ∈ Toset)
opsrso.t (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
opsrso.w (πœ‘ β†’ 𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐡 = (Baseβ€˜π‘†)
opsrtoslem.q < = (ltβ€˜π‘…)
opsrtoslem.c 𝐢 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
opsrtoslem.ps (πœ“ ↔ βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))))
opsrtoslem.l ≀ = (leβ€˜π‘‚)
Assertion
Ref Expression
opsrtoslem2 (πœ‘ β†’ 𝑂 ∈ Toset)
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝑀,𝑦,𝑧,𝐢   𝑀,β„Ž,π‘₯,𝑦,𝑧,𝐼   πœ‘,β„Ž,𝑀,π‘₯,𝑦,𝑧   𝑀,𝐷,π‘₯,𝑦,𝑧   𝑀, < ,π‘₯,𝑦,𝑧   𝑀,𝑅,π‘₯,𝑦,𝑧   𝑀,𝑇,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ“(π‘₯,𝑦,𝑧,𝑀,β„Ž)   𝐡(𝑧,𝑀,β„Ž)   𝐢(β„Ž)   𝐷(β„Ž)   𝑅(β„Ž)   𝑆(π‘₯,𝑦,𝑧,𝑀,β„Ž)   < (β„Ž)   𝑇(β„Ž)   ≀ (π‘₯,𝑦,𝑧,𝑀,β„Ž)   𝑂(π‘₯,𝑦,𝑧,𝑀,β„Ž)   𝑉(π‘₯,𝑦,𝑧,𝑀,β„Ž)

Proof of Theorem opsrtoslem2
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.c . . . . . . . 8 𝐢 = (𝑇 <bag 𝐼)
2 opsrtoslem.d . . . . . . . 8 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
3 opsrso.i . . . . . . . 8 (πœ‘ β†’ 𝐼 ∈ 𝑉)
43, 3xpexd 7738 . . . . . . . . 9 (πœ‘ β†’ (𝐼 Γ— 𝐼) ∈ V)
5 opsrso.t . . . . . . . . 9 (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
64, 5ssexd 5325 . . . . . . . 8 (πœ‘ β†’ 𝑇 ∈ V)
7 opsrso.w . . . . . . . 8 (πœ‘ β†’ 𝑇 We 𝐼)
81, 2, 3, 6, 7ltbwe 21599 . . . . . . 7 (πœ‘ β†’ 𝐢 We 𝐷)
9 opsrso.r . . . . . . . . 9 (πœ‘ β†’ 𝑅 ∈ Toset)
10 eqid 2733 . . . . . . . . . . 11 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
11 eqid 2733 . . . . . . . . . . 11 (leβ€˜π‘…) = (leβ€˜π‘…)
12 opsrtoslem.q . . . . . . . . . . 11 < = (ltβ€˜π‘…)
1310, 11, 12tosso 18372 . . . . . . . . . 10 (𝑅 ∈ Toset β†’ (𝑅 ∈ Toset ↔ ( < Or (Baseβ€˜π‘…) ∧ ( I β†Ύ (Baseβ€˜π‘…)) βŠ† (leβ€˜π‘…))))
1413ibi 267 . . . . . . . . 9 (𝑅 ∈ Toset β†’ ( < Or (Baseβ€˜π‘…) ∧ ( I β†Ύ (Baseβ€˜π‘…)) βŠ† (leβ€˜π‘…)))
159, 14syl 17 . . . . . . . 8 (πœ‘ β†’ ( < Or (Baseβ€˜π‘…) ∧ ( I β†Ύ (Baseβ€˜π‘…)) βŠ† (leβ€˜π‘…)))
1615simpld 496 . . . . . . 7 (πœ‘ β†’ < Or (Baseβ€˜π‘…))
17 opsrtoslem.ps . . . . . . . . 9 (πœ“ ↔ βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))))
1817opabbii 5216 . . . . . . . 8 {⟨π‘₯, π‘¦βŸ© ∣ πœ“} = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€)))}
1918wemapso 9546 . . . . . . 7 ((𝐢 We 𝐷 ∧ < Or (Baseβ€˜π‘…)) β†’ {⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or ((Baseβ€˜π‘…) ↑m 𝐷))
208, 16, 19syl2anc 585 . . . . . 6 (πœ‘ β†’ {⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or ((Baseβ€˜π‘…) ↑m 𝐷))
21 opsrtoslem.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
22 opsrtoslem.b . . . . . . . 8 𝐡 = (Baseβ€˜π‘†)
2321, 10, 2, 22, 3psrbas 21497 . . . . . . 7 (πœ‘ β†’ 𝐡 = ((Baseβ€˜π‘…) ↑m 𝐷))
24 soeq2 5611 . . . . . . 7 (𝐡 = ((Baseβ€˜π‘…) ↑m 𝐷) β†’ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or 𝐡 ↔ {⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or ((Baseβ€˜π‘…) ↑m 𝐷)))
2523, 24syl 17 . . . . . 6 (πœ‘ β†’ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or 𝐡 ↔ {⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or ((Baseβ€˜π‘…) ↑m 𝐷)))
2620, 25mpbird 257 . . . . 5 (πœ‘ β†’ {⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or 𝐡)
27 soinxp 5758 . . . . 5 ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} Or 𝐡 ↔ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) Or 𝐡)
2826, 27sylib 217 . . . 4 (πœ‘ β†’ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) Or 𝐡)
29 opsrso.o . . . . . . . 8 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
3029fvexi 6906 . . . . . . 7 𝑂 ∈ V
31 opsrtoslem.l . . . . . . . 8 ≀ = (leβ€˜π‘‚)
32 eqid 2733 . . . . . . . 8 (ltβ€˜π‘‚) = (ltβ€˜π‘‚)
3331, 32pltfval 18284 . . . . . . 7 (𝑂 ∈ V β†’ (ltβ€˜π‘‚) = ( ≀ βˆ– I ))
3430, 33ax-mp 5 . . . . . 6 (ltβ€˜π‘‚) = ( ≀ βˆ– I )
35 difundir 4281 . . . . . . . 8 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡)) βˆ– I ) = ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I ) βˆͺ (( I β†Ύ 𝐡) βˆ– I ))
36 resss 6007 . . . . . . . . . 10 ( I β†Ύ 𝐡) βŠ† I
37 ssdif0 4364 . . . . . . . . . 10 (( I β†Ύ 𝐡) βŠ† I ↔ (( I β†Ύ 𝐡) βˆ– I ) = βˆ…)
3836, 37mpbi 229 . . . . . . . . 9 (( I β†Ύ 𝐡) βˆ– I ) = βˆ…
3938uneq2i 4161 . . . . . . . 8 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I ) βˆͺ (( I β†Ύ 𝐡) βˆ– I )) = ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I ) βˆͺ βˆ…)
40 un0 4391 . . . . . . . 8 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I ) βˆͺ βˆ…) = (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I )
4135, 39, 403eqtri 2765 . . . . . . 7 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡)) βˆ– I ) = (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I )
4229, 3, 9, 5, 7, 21, 22, 12, 1, 2, 17, 31opsrtoslem1 21616 . . . . . . . 8 (πœ‘ β†’ ≀ = (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡)))
4342difeq1d 4122 . . . . . . 7 (πœ‘ β†’ ( ≀ βˆ– I ) = ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡)) βˆ– I ))
44 relinxp 5815 . . . . . . . . . . 11 Rel ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))
4544a1i 11 . . . . . . . . . 10 (πœ‘ β†’ Rel ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)))
46 df-br 5150 . . . . . . . . . . . . . 14 (π‘Ž I 𝑏 ↔ βŸ¨π‘Ž, π‘βŸ© ∈ I )
47 vex 3479 . . . . . . . . . . . . . . 15 𝑏 ∈ V
4847ideq 5853 . . . . . . . . . . . . . 14 (π‘Ž I 𝑏 ↔ π‘Ž = 𝑏)
4946, 48bitr3i 277 . . . . . . . . . . . . 13 (βŸ¨π‘Ž, π‘βŸ© ∈ I ↔ π‘Ž = 𝑏)
50 brin 5201 . . . . . . . . . . . . . . . . . 18 (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž ↔ (π‘Ž{⟨π‘₯, π‘¦βŸ© ∣ πœ“}π‘Ž ∧ π‘Ž(𝐡 Γ— 𝐡)π‘Ž))
5150simprbi 498 . . . . . . . . . . . . . . . . 17 (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž β†’ π‘Ž(𝐡 Γ— 𝐡)π‘Ž)
52 brxp 5726 . . . . . . . . . . . . . . . . . 18 (π‘Ž(𝐡 Γ— 𝐡)π‘Ž ↔ (π‘Ž ∈ 𝐡 ∧ π‘Ž ∈ 𝐡))
5352simprbi 498 . . . . . . . . . . . . . . . . 17 (π‘Ž(𝐡 Γ— 𝐡)π‘Ž β†’ π‘Ž ∈ 𝐡)
5451, 53syl 17 . . . . . . . . . . . . . . . 16 (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž β†’ π‘Ž ∈ 𝐡)
55 sonr 5612 . . . . . . . . . . . . . . . . 17 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) Or 𝐡 ∧ π‘Ž ∈ 𝐡) β†’ Β¬ π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž)
5655ex 414 . . . . . . . . . . . . . . . 16 (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) Or 𝐡 β†’ (π‘Ž ∈ 𝐡 β†’ Β¬ π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž))
5728, 54, 56syl2im 40 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž β†’ Β¬ π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž))
5857pm2.01d 189 . . . . . . . . . . . . . 14 (πœ‘ β†’ Β¬ π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž)
59 breq2 5153 . . . . . . . . . . . . . . . 16 (π‘Ž = 𝑏 β†’ (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž ↔ π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))𝑏))
60 df-br 5150 . . . . . . . . . . . . . . . 16 (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))𝑏 ↔ βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)))
6159, 60bitrdi 287 . . . . . . . . . . . . . . 15 (π‘Ž = 𝑏 β†’ (π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž ↔ βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))))
6261notbid 318 . . . . . . . . . . . . . 14 (π‘Ž = 𝑏 β†’ (Β¬ π‘Ž({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))π‘Ž ↔ Β¬ βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))))
6358, 62syl5ibcom 244 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘Ž = 𝑏 β†’ Β¬ βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))))
6449, 63biimtrid 241 . . . . . . . . . . . 12 (πœ‘ β†’ (βŸ¨π‘Ž, π‘βŸ© ∈ I β†’ Β¬ βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡))))
6564con2d 134 . . . . . . . . . . 11 (πœ‘ β†’ (βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) β†’ Β¬ βŸ¨π‘Ž, π‘βŸ© ∈ I ))
66 opex 5465 . . . . . . . . . . . 12 βŸ¨π‘Ž, π‘βŸ© ∈ V
67 eldif 3959 . . . . . . . . . . . 12 (βŸ¨π‘Ž, π‘βŸ© ∈ (V βˆ– I ) ↔ (βŸ¨π‘Ž, π‘βŸ© ∈ V ∧ Β¬ βŸ¨π‘Ž, π‘βŸ© ∈ I ))
6866, 67mpbiran 708 . . . . . . . . . . 11 (βŸ¨π‘Ž, π‘βŸ© ∈ (V βˆ– I ) ↔ Β¬ βŸ¨π‘Ž, π‘βŸ© ∈ I )
6965, 68imbitrrdi 251 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨π‘Ž, π‘βŸ© ∈ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) β†’ βŸ¨π‘Ž, π‘βŸ© ∈ (V βˆ– I )))
7045, 69relssdv 5789 . . . . . . . . 9 (πœ‘ β†’ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βŠ† (V βˆ– I ))
71 disj2 4458 . . . . . . . . 9 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) ∩ I ) = βˆ… ↔ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βŠ† (V βˆ– I ))
7270, 71sylibr 233 . . . . . . . 8 (πœ‘ β†’ (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) ∩ I ) = βˆ…)
73 disj3 4454 . . . . . . . 8 ((({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) ∩ I ) = βˆ… ↔ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) = (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I ))
7472, 73sylib 217 . . . . . . 7 (πœ‘ β†’ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) = (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆ– I ))
7541, 43, 743eqtr4a 2799 . . . . . 6 (πœ‘ β†’ ( ≀ βˆ– I ) = ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)))
7634, 75eqtrid 2785 . . . . 5 (πœ‘ β†’ (ltβ€˜π‘‚) = ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)))
77 soeq1 5610 . . . . 5 ((ltβ€˜π‘‚) = ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) β†’ ((ltβ€˜π‘‚) Or 𝐡 ↔ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) Or 𝐡))
7876, 77syl 17 . . . 4 (πœ‘ β†’ ((ltβ€˜π‘‚) Or 𝐡 ↔ ({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) Or 𝐡))
7928, 78mpbird 257 . . 3 (πœ‘ β†’ (ltβ€˜π‘‚) Or 𝐡)
8021, 29, 5opsrbas 21606 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘†) = (Baseβ€˜π‘‚))
8122, 80eqtrid 2785 . . . 4 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘‚))
82 soeq2 5611 . . . 4 (𝐡 = (Baseβ€˜π‘‚) β†’ ((ltβ€˜π‘‚) Or 𝐡 ↔ (ltβ€˜π‘‚) Or (Baseβ€˜π‘‚)))
8381, 82syl 17 . . 3 (πœ‘ β†’ ((ltβ€˜π‘‚) Or 𝐡 ↔ (ltβ€˜π‘‚) Or (Baseβ€˜π‘‚)))
8479, 83mpbid 231 . 2 (πœ‘ β†’ (ltβ€˜π‘‚) Or (Baseβ€˜π‘‚))
8581reseq2d 5982 . . . 4 (πœ‘ β†’ ( I β†Ύ 𝐡) = ( I β†Ύ (Baseβ€˜π‘‚)))
86 ssun2 4174 . . . 4 ( I β†Ύ 𝐡) βŠ† (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡))
8785, 86eqsstrrdi 4038 . . 3 (πœ‘ β†’ ( I β†Ύ (Baseβ€˜π‘‚)) βŠ† (({⟨π‘₯, π‘¦βŸ© ∣ πœ“} ∩ (𝐡 Γ— 𝐡)) βˆͺ ( I β†Ύ 𝐡)))
8887, 42sseqtrrd 4024 . 2 (πœ‘ β†’ ( I β†Ύ (Baseβ€˜π‘‚)) βŠ† ≀ )
89 eqid 2733 . . . 4 (Baseβ€˜π‘‚) = (Baseβ€˜π‘‚)
9089, 31, 32tosso 18372 . . 3 (𝑂 ∈ V β†’ (𝑂 ∈ Toset ↔ ((ltβ€˜π‘‚) Or (Baseβ€˜π‘‚) ∧ ( I β†Ύ (Baseβ€˜π‘‚)) βŠ† ≀ )))
9130, 90ax-mp 5 . 2 (𝑂 ∈ Toset ↔ ((ltβ€˜π‘‚) Or (Baseβ€˜π‘‚) ∧ ( I β†Ύ (Baseβ€˜π‘‚)) βŠ† ≀ ))
9284, 88, 91sylanbrc 584 1 (πœ‘ β†’ 𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433  Vcvv 3475   βˆ– cdif 3946   βˆͺ cun 3947   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  βŸ¨cop 4635   class class class wbr 5149  {copab 5211   I cid 5574   Or wor 5588   We wwe 5631   Γ— cxp 5675  β—‘ccnv 5676   β†Ύ cres 5679   β€œ cima 5680  Rel wrel 5682  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  Fincfn 8939  β„•cn 12212  β„•0cn0 12472  Basecbs 17144  lecple 17204  ltcplt 18261  Tosetctos 18369   mPwSer cmps 21457   <bag cltb 21460   ordPwSer copws 21461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-seqom 8448  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-oexp 8472  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-oi 9505  df-cnf 9657  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-xnn0 12545  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-hash 14291  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-tset 17216  df-ple 17217  df-proset 18248  df-poset 18266  df-plt 18283  df-toset 18370  df-psr 21462  df-ltbag 21465  df-opsr 21466
This theorem is referenced by:  opsrtos  21618
  Copyright terms: Public domain W3C validator