![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnso | Structured version Visualization version GIF version |
Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
cnso | ⊢ ∃𝑥 𝑥 Or ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11324 | . . . 4 ⊢ < Or ℝ | |
2 | eqid 2728 | . . . . . 6 ⊢ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} | |
3 | f1oiso 7359 | . . . . . 6 ⊢ ((𝑎:ℝ–1-1-onto→ℂ ∧ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) | |
4 | 2, 3 | mpan2 690 | . . . . 5 ⊢ (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) |
5 | isoso 7356 | . . . . . 6 ⊢ (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ)) | |
6 | soinxp 5759 | . . . . . 6 ⊢ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) | |
7 | 5, 6 | bitrdi 287 | . . . . 5 ⊢ (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) |
9 | 1, 8 | mpbii 232 | . . 3 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) |
10 | cnex 11219 | . . . . . 6 ⊢ ℂ ∈ V | |
11 | 10, 10 | xpex 7755 | . . . . 5 ⊢ (ℂ × ℂ) ∈ V |
12 | 11 | inex2 5318 | . . . 4 ⊢ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V |
13 | soeq1 5611 | . . . 4 ⊢ (𝑥 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) | |
14 | 12, 13 | spcev 3593 | . . 3 ⊢ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ) |
16 | rpnnen 16203 | . . . 4 ⊢ ℝ ≈ 𝒫 ℕ | |
17 | cpnnen 16205 | . . . 4 ⊢ ℂ ≈ 𝒫 ℕ | |
18 | 16, 17 | entr4i 9031 | . . 3 ⊢ ℝ ≈ ℂ |
19 | bren 8973 | . . 3 ⊢ (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ) | |
20 | 18, 19 | mpbi 229 | . 2 ⊢ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ |
21 | 15, 20 | exlimiiv 1927 | 1 ⊢ ∃𝑥 𝑥 Or ℂ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∃wrex 3067 ∩ cin 3946 𝒫 cpw 4603 class class class wbr 5148 {copab 5210 Or wor 5589 × cxp 5676 –1-1-onto→wf1o 6547 ‘cfv 6548 Isom wiso 6549 ≈ cen 8960 ℂcc 11136 ℝcr 11137 < clt 11278 ℕcn 12242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-omul 8491 df-er 8724 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 |
This theorem is referenced by: aannenlem3 26264 |
Copyright terms: Public domain | W3C validator |