MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnso Structured version   Visualization version   GIF version

Theorem cnso 15593
Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
cnso 𝑥 𝑥 Or ℂ

Proof of Theorem cnso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltso 10713 . . . 4 < Or ℝ
2 eqid 2825 . . . . . 6 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)}
3 f1oiso 7099 . . . . . 6 ((𝑎:ℝ–1-1-onto→ℂ ∧ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ))
42, 3mpan2 687 . . . . 5 (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ))
5 isoso 7096 . . . . . 6 (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ))
6 soinxp 5631 . . . . . 6 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)
75, 6syl6bb 288 . . . . 5 (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
84, 7syl 17 . . . 4 (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
91, 8mpbii 234 . . 3 (𝑎:ℝ–1-1-onto→ℂ → ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)
10 cnex 10610 . . . . . 6 ℂ ∈ V
1110, 10xpex 7468 . . . . 5 (ℂ × ℂ) ∈ V
1211inex2 5218 . . . 4 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V
13 soeq1 5492 . . . 4 (𝑥 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
1412, 13spcev 3610 . . 3 (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ)
159, 14syl 17 . 2 (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ)
16 rpnnen 15573 . . . 4 ℝ ≈ 𝒫 ℕ
17 cpnnen 15575 . . . 4 ℂ ≈ 𝒫 ℕ
1816, 17entr4i 8558 . . 3 ℝ ≈ ℂ
19 bren 8510 . . 3 (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ)
2018, 19mpbi 231 . 2 𝑎 𝑎:ℝ–1-1-onto→ℂ
2115, 20exlimiiv 1925 1 𝑥 𝑥 Or ℂ
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wex 1773  wrex 3143  cin 3938  𝒫 cpw 4541   class class class wbr 5062  {copab 5124   Or wor 5471   × cxp 5551  1-1-ontowf1o 6350  cfv 6351   Isom wiso 6352  cen 8498  cc 10527  cr 10528   < clt 10667  cn 11630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036
This theorem is referenced by:  aannenlem3  24837
  Copyright terms: Public domain W3C validator