| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnso | Structured version Visualization version GIF version | ||
| Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnso | ⊢ ∃𝑥 𝑥 Or ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11193 | . . . 4 ⊢ < Or ℝ | |
| 2 | eqid 2731 | . . . . . 6 ⊢ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} | |
| 3 | f1oiso 7285 | . . . . . 6 ⊢ ((𝑎:ℝ–1-1-onto→ℂ ∧ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) | |
| 4 | 2, 3 | mpan2 691 | . . . . 5 ⊢ (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) |
| 5 | isoso 7282 | . . . . . 6 ⊢ (𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ)) | |
| 6 | soinxp 5696 | . . . . . 6 ⊢ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) | |
| 7 | 5, 6 | bitrdi 287 | . . . . 5 ⊢ (𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) |
| 9 | 1, 8 | mpbii 233 | . . 3 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) |
| 10 | cnex 11087 | . . . . . 6 ⊢ ℂ ∈ V | |
| 11 | 10, 10 | xpex 7686 | . . . . 5 ⊢ (ℂ × ℂ) ∈ V |
| 12 | 11 | inex2 5254 | . . . 4 ⊢ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V |
| 13 | soeq1 5543 | . . . 4 ⊢ (𝑥 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) | |
| 14 | 12, 13 | spcev 3556 | . . 3 ⊢ (({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ) |
| 15 | 9, 14 | syl 17 | . 2 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ) |
| 16 | rpnnen 16136 | . . . 4 ⊢ ℝ ≈ 𝒫 ℕ | |
| 17 | cpnnen 16138 | . . . 4 ⊢ ℂ ≈ 𝒫 ℕ | |
| 18 | 16, 17 | entr4i 8933 | . . 3 ⊢ ℝ ≈ ℂ |
| 19 | bren 8879 | . . 3 ⊢ (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ) | |
| 20 | 18, 19 | mpbi 230 | . 2 ⊢ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ |
| 21 | 15, 20 | exlimiiv 1932 | 1 ⊢ ∃𝑥 𝑥 Or ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∃wrex 3056 ∩ cin 3896 𝒫 cpw 4547 class class class wbr 5089 {copab 5151 Or wor 5521 × cxp 5612 –1-1-onto→wf1o 6480 ‘cfv 6481 Isom wiso 6482 ≈ cen 8866 ℂcc 11004 ℝcr 11005 < clt 11146 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: aannenlem3 26265 |
| Copyright terms: Public domain | W3C validator |