MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnso Structured version   Visualization version   GIF version

Theorem cnso 15600
Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
cnso 𝑥 𝑥 Or ℂ

Proof of Theorem cnso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltso 10721 . . . 4 < Or ℝ
2 eqid 2821 . . . . . 6 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)}
3 f1oiso 7104 . . . . . 6 ((𝑎:ℝ–1-1-onto→ℂ ∧ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ))
42, 3mpan2 689 . . . . 5 (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ))
5 isoso 7101 . . . . . 6 (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ))
6 soinxp 5633 . . . . . 6 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)
75, 6syl6bb 289 . . . . 5 (𝑎 Isom < , {⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
84, 7syl 17 . . . 4 (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
91, 8mpbii 235 . . 3 (𝑎:ℝ–1-1-onto→ℂ → ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)
10 cnex 10618 . . . . . 6 ℂ ∈ V
1110, 10xpex 7476 . . . . 5 (ℂ × ℂ) ∈ V
1211inex2 5222 . . . 4 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V
13 soeq1 5494 . . . 4 (𝑥 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ))
1412, 13spcev 3607 . . 3 (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎𝑑) ∧ 𝑐 = (𝑎𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ)
159, 14syl 17 . 2 (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ)
16 rpnnen 15580 . . . 4 ℝ ≈ 𝒫 ℕ
17 cpnnen 15582 . . . 4 ℂ ≈ 𝒫 ℕ
1816, 17entr4i 8566 . . 3 ℝ ≈ ℂ
19 bren 8518 . . 3 (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ)
2018, 19mpbi 232 . 2 𝑎 𝑎:ℝ–1-1-onto→ℂ
2115, 20exlimiiv 1932 1 𝑥 𝑥 Or ℂ
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wrex 3139  cin 3935  𝒫 cpw 4539   class class class wbr 5066  {copab 5128   Or wor 5473   × cxp 5553  1-1-ontowf1o 6354  cfv 6355   Isom wiso 6356  cen 8506  cc 10535  cr 10536   < clt 10675  cn 11638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043
This theorem is referenced by:  aannenlem3  24919
  Copyright terms: Public domain W3C validator