|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnso | Structured version Visualization version GIF version | ||
| Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| cnso | ⊢ ∃𝑥 𝑥 Or ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltso 11341 | . . . 4 ⊢ < Or ℝ | |
| 2 | eqid 2737 | . . . . . 6 ⊢ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} | |
| 3 | f1oiso 7371 | . . . . . 6 ⊢ ((𝑎:ℝ–1-1-onto→ℂ ∧ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)}) → 𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) | |
| 4 | 2, 3 | mpan2 691 | . . . . 5 ⊢ (𝑎:ℝ–1-1-onto→ℂ → 𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ)) | 
| 5 | isoso 7368 | . . . . . 6 ⊢ (𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ)) | |
| 6 | soinxp 5767 | . . . . . 6 ⊢ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} Or ℂ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) | |
| 7 | 5, 6 | bitrdi 287 | . . . . 5 ⊢ (𝑎 Isom < , {〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} (ℝ, ℂ) → ( < Or ℝ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) | 
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ( < Or ℝ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) | 
| 9 | 1, 8 | mpbii 233 | . . 3 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ) | 
| 10 | cnex 11236 | . . . . . 6 ⊢ ℂ ∈ V | |
| 11 | 10, 10 | xpex 7773 | . . . . 5 ⊢ (ℂ × ℂ) ∈ V | 
| 12 | 11 | inex2 5318 | . . . 4 ⊢ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) ∈ V | 
| 13 | soeq1 5613 | . . . 4 ⊢ (𝑥 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) → (𝑥 Or ℂ ↔ ({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ)) | |
| 14 | 12, 13 | spcev 3606 | . . 3 ⊢ (({〈𝑏, 𝑐〉 ∣ ∃𝑑 ∈ ℝ ∃𝑒 ∈ ℝ ((𝑏 = (𝑎‘𝑑) ∧ 𝑐 = (𝑎‘𝑒)) ∧ 𝑑 < 𝑒)} ∩ (ℂ × ℂ)) Or ℂ → ∃𝑥 𝑥 Or ℂ) | 
| 15 | 9, 14 | syl 17 | . 2 ⊢ (𝑎:ℝ–1-1-onto→ℂ → ∃𝑥 𝑥 Or ℂ) | 
| 16 | rpnnen 16263 | . . . 4 ⊢ ℝ ≈ 𝒫 ℕ | |
| 17 | cpnnen 16265 | . . . 4 ⊢ ℂ ≈ 𝒫 ℕ | |
| 18 | 16, 17 | entr4i 9051 | . . 3 ⊢ ℝ ≈ ℂ | 
| 19 | bren 8995 | . . 3 ⊢ (ℝ ≈ ℂ ↔ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ) | |
| 20 | 18, 19 | mpbi 230 | . 2 ⊢ ∃𝑎 𝑎:ℝ–1-1-onto→ℂ | 
| 21 | 15, 20 | exlimiiv 1931 | 1 ⊢ ∃𝑥 𝑥 Or ℂ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∃wrex 3070 ∩ cin 3950 𝒫 cpw 4600 class class class wbr 5143 {copab 5205 Or wor 5591 × cxp 5683 –1-1-onto→wf1o 6560 ‘cfv 6561 Isom wiso 6562 ≈ cen 8982 ℂcc 11153 ℝcr 11154 < clt 11295 ℕcn 12266 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 | 
| This theorem is referenced by: aannenlem3 26372 | 
| Copyright terms: Public domain | W3C validator |