|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sotrd | Structured version Visualization version GIF version | ||
| Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.) | 
| Ref | Expression | 
|---|---|
| sotrd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) | 
| sotrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| sotrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) | 
| sotrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐴) | 
| sotrd.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) | 
| sotrd.6 | ⊢ (𝜑 → 𝑌𝑅𝑍) | 
| Ref | Expression | 
|---|---|
| sotrd | ⊢ (𝜑 → 𝑋𝑅𝑍) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sotrd.5 | . 2 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
| 2 | sotrd.6 | . 2 ⊢ (𝜑 → 𝑌𝑅𝑍) | |
| 3 | sotrd.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 4 | sotrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | sotrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 6 | sotrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐴) | |
| 7 | sotr 5616 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1373 | . 2 ⊢ (𝜑 → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) | 
| 9 | 1, 2, 8 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋𝑅𝑍) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 Or wor 5590 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-po 5591 df-so 5592 | 
| This theorem is referenced by: ormkglobd 46895 | 
| Copyright terms: Public domain | W3C validator |