Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sotrd | Structured version Visualization version GIF version |
Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.) |
Ref | Expression |
---|---|
sotrd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
sotrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
sotrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
sotrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐴) |
sotrd.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) |
sotrd.6 | ⊢ (𝜑 → 𝑌𝑅𝑍) |
Ref | Expression |
---|---|
sotrd | ⊢ (𝜑 → 𝑋𝑅𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotrd.5 | . 2 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
2 | sotrd.6 | . 2 ⊢ (𝜑 → 𝑌𝑅𝑍) | |
3 | sotrd.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
4 | sotrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
5 | sotrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
6 | sotrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐴) | |
7 | sotr 5492 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) |
9 | 1, 2, 8 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋𝑅𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 class class class wbr 5053 Or wor 5467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-po 5468 df-so 5469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |