MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrd Structured version   Visualization version   GIF version

Theorem sotrd 5617
Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.)
Hypotheses
Ref Expression
sotrd.1 (𝜑𝑅 Or 𝐴)
sotrd.2 (𝜑𝑋𝐴)
sotrd.3 (𝜑𝑌𝐴)
sotrd.4 (𝜑𝑍𝐴)
sotrd.5 (𝜑𝑋𝑅𝑌)
sotrd.6 (𝜑𝑌𝑅𝑍)
Assertion
Ref Expression
sotrd (𝜑𝑋𝑅𝑍)

Proof of Theorem sotrd
StepHypRef Expression
1 sotrd.5 . 2 (𝜑𝑋𝑅𝑌)
2 sotrd.6 . 2 (𝜑𝑌𝑅𝑍)
3 sotrd.1 . . 3 (𝜑𝑅 Or 𝐴)
4 sotrd.2 . . 3 (𝜑𝑋𝐴)
5 sotrd.3 . . 3 (𝜑𝑌𝐴)
6 sotrd.4 . . 3 (𝜑𝑍𝐴)
7 sotr 5616 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋𝑅𝑌𝑌𝑅𝑍) → 𝑋𝑅𝑍))
83, 4, 5, 6, 7syl13anc 1373 . 2 (𝜑 → ((𝑋𝑅𝑌𝑌𝑅𝑍) → 𝑋𝑅𝑍))
91, 2, 8mp2and 699 1 (𝜑𝑋𝑅𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107   class class class wbr 5142   Or wor 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-po 5591  df-so 5592
This theorem is referenced by:  ormkglobd  46895
  Copyright terms: Public domain W3C validator