| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotrd | Structured version Visualization version GIF version | ||
| Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| sotrd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| sotrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| sotrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| sotrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐴) |
| sotrd.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) |
| sotrd.6 | ⊢ (𝜑 → 𝑌𝑅𝑍) |
| Ref | Expression |
|---|---|
| sotrd | ⊢ (𝜑 → 𝑋𝑅𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotrd.5 | . 2 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
| 2 | sotrd.6 | . 2 ⊢ (𝜑 → 𝑌𝑅𝑍) | |
| 3 | sotrd.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 4 | sotrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | sotrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 6 | sotrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐴) | |
| 7 | sotr 5591 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋𝑅𝑌 ∧ 𝑌𝑅𝑍) → 𝑋𝑅𝑍)) |
| 9 | 1, 2, 8 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋𝑅𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 Or wor 5565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-po 5566 df-so 5567 |
| This theorem is referenced by: ormkglobd 46871 |
| Copyright terms: Public domain | W3C validator |