MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr Structured version   Visualization version   GIF version

Theorem sotr 5461
Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
sotr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem sotr
StepHypRef Expression
1 sopo 5456 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 potr 5450 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
31, 2sylan 583 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wcel 2113   class class class wbr 5027   Po wpo 5436   Or wor 5437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-v 3399  df-un 3846  df-sn 4514  df-pr 4516  df-op 4520  df-br 5028  df-po 5438  df-so 5439
This theorem is referenced by:  sotr2  5469  wetrep  5512  wereu2  5516  sotri  5955  suplub2  8991  sotrd  33296  sotr3  33297  slttr  33583  fin2solem  35375
  Copyright terms: Public domain W3C validator