![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotr | Structured version Visualization version GIF version |
Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
sotr | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5279 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | potr 5274 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) | |
3 | 1, 2 | sylan 577 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 ∈ wcel 2166 class class class wbr 4872 Po wpo 5260 Or wor 5261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rab 3125 df-v 3415 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-br 4873 df-po 5262 df-so 5263 |
This theorem is referenced by: sotr2 5291 wetrep 5334 wereu2 5338 sotri 5764 suplub2 8635 sotrd 32196 sotr3 32197 slttr 32410 fin2solem 33937 |
Copyright terms: Public domain | W3C validator |