MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr Structured version   Visualization version   GIF version

Theorem sotr 5612
Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
sotr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem sotr
StepHypRef Expression
1 sopo 5607 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 potr 5601 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
31, 2sylan 580 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106   class class class wbr 5148   Po wpo 5586   Or wor 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-po 5588  df-so 5589
This theorem is referenced by:  sotr2  5620  sotr3  5627  wetrep  5669  wereu2  5673  sotri  6128  suplub2  9455  slttr  27247  sotrd  34730  fin2solem  36469
  Copyright terms: Public domain W3C validator