MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr Structured version   Visualization version   GIF version

Theorem sotr 5556
Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
sotr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem sotr
StepHypRef Expression
1 sopo 5550 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 potr 5544 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
31, 2sylan 580 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5095   Po wpo 5529   Or wor 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-po 5531  df-so 5532
This theorem is referenced by:  sotrd  5557  sotr2  5565  sotr3  5572  wetrep  5616  wereu2  5620  sotri  6080  suplub2  9370  slttr  27676  weiunpo  36458  fin2solem  37605
  Copyright terms: Public domain W3C validator