Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintfv Structured version   Visualization version   GIF version

Theorem elintfv 33470
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.)
Hypothesis
Ref Expression
elintfv.1 𝑋 ∈ V
Assertion
Ref Expression
elintfv ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem elintfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elintfv.1 . . 3 𝑋 ∈ V
21elint 4874 . 2 (𝑋 (𝐹𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧))
3 fvelimab 6793 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑧 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑧))
43imbi1d 345 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧)))
5 r19.23v 3205 . . . . 5 (∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧))
64, 5bitr4di 292 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
76albidv 1928 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
8 ralcom4 3160 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧))
9 eqcom 2745 . . . . . . . 8 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
109imbi1i 353 . . . . . . 7 (((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (𝑧 = (𝐹𝑦) → 𝑋𝑧))
1110albii 1827 . . . . . 6 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧))
12 fvex 6739 . . . . . . 7 (𝐹𝑦) ∈ V
13 eleq2 2827 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑋𝑧𝑋 ∈ (𝐹𝑦)))
1412, 13ceqsalv 3450 . . . . . 6 (∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1511, 14bitri 278 . . . . 5 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1615ralbii 3089 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
178, 16bitr3i 280 . . 3 (∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
187, 17bitrdi 290 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
192, 18syl5bb 286 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2111  wral 3062  wrex 3063  Vcvv 3415  wss 3875   cint 4868  cima 5563   Fn wfn 6384  cfv 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pr 5331
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-int 4869  df-br 5063  df-opab 5125  df-id 5464  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-iota 6347  df-fun 6391  df-fn 6392  df-fv 6397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator