Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintfv Structured version   Visualization version   GIF version

Theorem elintfv 33120
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.)
Hypothesis
Ref Expression
elintfv.1 𝑋 ∈ V
Assertion
Ref Expression
elintfv ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem elintfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elintfv.1 . . 3 𝑋 ∈ V
21elint 4844 . 2 (𝑋 (𝐹𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧))
3 fvelimab 6712 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑧 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑧))
43imbi1d 345 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧)))
5 r19.23v 3238 . . . . 5 (∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧))
64, 5syl6bbr 292 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
76albidv 1921 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
8 ralcom4 3198 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧))
9 eqcom 2805 . . . . . . . 8 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
109imbi1i 353 . . . . . . 7 (((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (𝑧 = (𝐹𝑦) → 𝑋𝑧))
1110albii 1821 . . . . . 6 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧))
12 fvex 6658 . . . . . . 7 (𝐹𝑦) ∈ V
13 eleq2 2878 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑋𝑧𝑋 ∈ (𝐹𝑦)))
1412, 13ceqsalv 3479 . . . . . 6 (∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1511, 14bitri 278 . . . . 5 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1615ralbii 3133 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
178, 16bitr3i 280 . . 3 (∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
187, 17syl6bb 290 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
192, 18syl5bb 286 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881   cint 4838  cima 5522   Fn wfn 6319  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator