Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elintfv | Structured version Visualization version GIF version |
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
elintfv.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
elintfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintfv.1 | . . 3 ⊢ 𝑋 ∈ V | |
2 | 1 | elint 4882 | . 2 ⊢ (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧)) |
3 | fvelimab 6823 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧)) | |
4 | 3 | imbi1d 341 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
5 | r19.23v 3207 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
6 | 4, 5 | bitr4di 288 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
7 | 6 | albidv 1924 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
8 | ralcom4 3161 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
9 | eqcom 2745 | . . . . . . . 8 ⊢ ((𝐹‘𝑦) = 𝑧 ↔ 𝑧 = (𝐹‘𝑦)) | |
10 | 9 | imbi1i 349 | . . . . . . 7 ⊢ (((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
11 | 10 | albii 1823 | . . . . . 6 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
12 | fvex 6769 | . . . . . . 7 ⊢ (𝐹‘𝑦) ∈ V | |
13 | eleq2 2827 | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝐹‘𝑦))) | |
14 | 12, 13 | ceqsalv 3457 | . . . . . 6 ⊢ (∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
15 | 11, 14 | bitri 274 | . . . . 5 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
16 | 15 | ralbii 3090 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
17 | 8, 16 | bitr3i 276 | . . 3 ⊢ (∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
18 | 7, 17 | bitrdi 286 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
19 | 2, 18 | syl5bb 282 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∩ cint 4876 “ cima 5583 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |