| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elintfv | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| elintfv.1 | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| elintfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintfv.1 | . . 3 ⊢ 𝑋 ∈ V | |
| 2 | 1 | elint 4901 | . 2 ⊢ (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧)) |
| 3 | fvelimab 6894 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧)) | |
| 4 | 3 | imbi1d 341 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
| 5 | r19.23v 3159 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
| 6 | 4, 5 | bitr4di 289 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
| 7 | 6 | albidv 1921 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
| 8 | ralcom4 3258 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
| 9 | eqcom 2738 | . . . . . . . 8 ⊢ ((𝐹‘𝑦) = 𝑧 ↔ 𝑧 = (𝐹‘𝑦)) | |
| 10 | 9 | imbi1i 349 | . . . . . . 7 ⊢ (((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
| 11 | 10 | albii 1820 | . . . . . 6 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
| 12 | fvex 6835 | . . . . . . 7 ⊢ (𝐹‘𝑦) ∈ V | |
| 13 | eleq2 2820 | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝐹‘𝑦))) | |
| 14 | 12, 13 | ceqsalv 3476 | . . . . . 6 ⊢ (∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
| 15 | 11, 14 | bitri 275 | . . . . 5 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
| 16 | 15 | ralbii 3078 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
| 17 | 8, 16 | bitr3i 277 | . . 3 ⊢ (∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
| 18 | 7, 17 | bitrdi 287 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
| 19 | 2, 18 | bitrid 283 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 ∩ cint 4895 “ cima 5617 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |