Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintfv Structured version   Visualization version   GIF version

Theorem elintfv 35759
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.)
Hypothesis
Ref Expression
elintfv.1 𝑋 ∈ V
Assertion
Ref Expression
elintfv ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem elintfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elintfv.1 . . 3 𝑋 ∈ V
21elint 4919 . 2 (𝑋 (𝐹𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧))
3 fvelimab 6936 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑧 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑧))
43imbi1d 341 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧)))
5 r19.23v 3162 . . . . 5 (∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧))
64, 5bitr4di 289 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
76albidv 1920 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
8 ralcom4 3264 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧))
9 eqcom 2737 . . . . . . . 8 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
109imbi1i 349 . . . . . . 7 (((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (𝑧 = (𝐹𝑦) → 𝑋𝑧))
1110albii 1819 . . . . . 6 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧))
12 fvex 6874 . . . . . . 7 (𝐹𝑦) ∈ V
13 eleq2 2818 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑋𝑧𝑋 ∈ (𝐹𝑦)))
1412, 13ceqsalv 3490 . . . . . 6 (∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1511, 14bitri 275 . . . . 5 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1615ralbii 3076 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
178, 16bitr3i 277 . . 3 (∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
187, 17bitrdi 287 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
192, 18bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917   cint 4913  cima 5644   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator