Step | Hyp | Ref
| Expression |
1 | | elintfv.1 |
. . 3
⊢ 𝑋 ∈ V |
2 | 1 | elint 4673 |
. 2
⊢ (𝑋 ∈ ∩ (𝐹
“ 𝐵) ↔
∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧)) |
3 | | ssel2 3793 |
. . . . . . . . . 10
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴) |
4 | | fnbrfvb 6460 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) = 𝑧 ↔ 𝑦𝐹𝑧)) |
5 | 3, 4 | sylan2 587 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑦) = 𝑧 ↔ 𝑦𝐹𝑧)) |
6 | 5 | anassrs 460 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑦) = 𝑧 ↔ 𝑦𝐹𝑧)) |
7 | 6 | rexbidva 3230 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 ↔ ∃𝑦 ∈ 𝐵 𝑦𝐹𝑧)) |
8 | | vex 3388 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
9 | 8 | elima 5688 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑦𝐹𝑧) |
10 | 7, 9 | syl6rbbr 282 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧)) |
11 | 10 | imbi1d 333 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
12 | | r19.23v 3204 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) |
13 | 11, 12 | syl6bbr 281 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
14 | 13 | albidv 2016 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
15 | | ralcom4 3412 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) |
16 | | eqcom 2806 |
. . . . . . . 8
⊢ ((𝐹‘𝑦) = 𝑧 ↔ 𝑧 = (𝐹‘𝑦)) |
17 | 16 | imbi1i 341 |
. . . . . . 7
⊢ (((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
18 | 17 | albii 1915 |
. . . . . 6
⊢
(∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
19 | | fvex 6424 |
. . . . . . 7
⊢ (𝐹‘𝑦) ∈ V |
20 | | eleq2 2867 |
. . . . . . 7
⊢ (𝑧 = (𝐹‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝐹‘𝑦))) |
21 | 19, 20 | ceqsalv 3421 |
. . . . . 6
⊢
(∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
22 | 18, 21 | bitri 267 |
. . . . 5
⊢
(∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
23 | 22 | ralbii 3161 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
24 | 15, 23 | bitr3i 269 |
. . 3
⊢
(∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
25 | 14, 24 | syl6bb 279 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
26 | 2, 25 | syl5bb 275 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |