Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintfv Structured version   Visualization version   GIF version

Theorem elintfv 35748
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.)
Hypothesis
Ref Expression
elintfv.1 𝑋 ∈ V
Assertion
Ref Expression
elintfv ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem elintfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elintfv.1 . . 3 𝑋 ∈ V
21elint 4902 . 2 (𝑋 (𝐹𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧))
3 fvelimab 6895 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑧 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑧))
43imbi1d 341 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧)))
5 r19.23v 3156 . . . . 5 (∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑧𝑋𝑧))
64, 5bitr4di 289 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
76albidv 1920 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧)))
8 ralcom4 3255 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧))
9 eqcom 2736 . . . . . . . 8 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
109imbi1i 349 . . . . . . 7 (((𝐹𝑦) = 𝑧𝑋𝑧) ↔ (𝑧 = (𝐹𝑦) → 𝑋𝑧))
1110albii 1819 . . . . . 6 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧))
12 fvex 6835 . . . . . . 7 (𝐹𝑦) ∈ V
13 eleq2 2817 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑋𝑧𝑋 ∈ (𝐹𝑦)))
1412, 13ceqsalv 3476 . . . . . 6 (∀𝑧(𝑧 = (𝐹𝑦) → 𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1511, 14bitri 275 . . . . 5 (∀𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ 𝑋 ∈ (𝐹𝑦))
1615ralbii 3075 . . . 4 (∀𝑦𝐵𝑧((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
178, 16bitr3i 277 . . 3 (∀𝑧𝑦𝐵 ((𝐹𝑦) = 𝑧𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦))
187, 17bitrdi 287 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑧(𝑧 ∈ (𝐹𝐵) → 𝑋𝑧) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
192, 18bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   cint 4896  cima 5622   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator