![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elintfv | Structured version Visualization version GIF version |
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
elintfv.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
elintfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintfv.1 | . . 3 ⊢ 𝑋 ∈ V | |
2 | 1 | elint 4918 | . 2 ⊢ (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧)) |
3 | fvelimab 6919 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧)) | |
4 | 3 | imbi1d 342 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
5 | r19.23v 3180 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
6 | 4, 5 | bitr4di 289 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
7 | 6 | albidv 1924 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
8 | ralcom4 3272 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
9 | eqcom 2744 | . . . . . . . 8 ⊢ ((𝐹‘𝑦) = 𝑧 ↔ 𝑧 = (𝐹‘𝑦)) | |
10 | 9 | imbi1i 350 | . . . . . . 7 ⊢ (((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
11 | 10 | albii 1822 | . . . . . 6 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
12 | fvex 6860 | . . . . . . 7 ⊢ (𝐹‘𝑦) ∈ V | |
13 | eleq2 2827 | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝐹‘𝑦))) | |
14 | 12, 13 | ceqsalv 3484 | . . . . . 6 ⊢ (∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
15 | 11, 14 | bitri 275 | . . . . 5 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
16 | 15 | ralbii 3097 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
17 | 8, 16 | bitr3i 277 | . . 3 ⊢ (∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
18 | 7, 17 | bitrdi 287 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
19 | 2, 18 | bitrid 283 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ∃wrex 3074 Vcvv 3448 ⊆ wss 3915 ∩ cint 4912 “ cima 5641 Fn wfn 6496 ‘cfv 6501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-fv 6509 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |