![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elintfv | Structured version Visualization version GIF version |
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
elintfv.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
elintfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintfv.1 | . . 3 ⊢ 𝑋 ∈ V | |
2 | 1 | elint 4957 | . 2 ⊢ (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧)) |
3 | fvelimab 6965 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑧 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧)) | |
4 | 3 | imbi1d 342 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
5 | r19.23v 3183 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
6 | 4, 5 | bitr4di 289 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
7 | 6 | albidv 1924 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧))) |
8 | ralcom4 3284 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧)) | |
9 | eqcom 2740 | . . . . . . . 8 ⊢ ((𝐹‘𝑦) = 𝑧 ↔ 𝑧 = (𝐹‘𝑦)) | |
10 | 9 | imbi1i 350 | . . . . . . 7 ⊢ (((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ (𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
11 | 10 | albii 1822 | . . . . . 6 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧)) |
12 | fvex 6905 | . . . . . . 7 ⊢ (𝐹‘𝑦) ∈ V | |
13 | eleq2 2823 | . . . . . . 7 ⊢ (𝑧 = (𝐹‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝐹‘𝑦))) | |
14 | 12, 13 | ceqsalv 3512 | . . . . . 6 ⊢ (∀𝑧(𝑧 = (𝐹‘𝑦) → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
15 | 11, 14 | bitri 275 | . . . . 5 ⊢ (∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ 𝑋 ∈ (𝐹‘𝑦)) |
16 | 15 | ralbii 3094 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
17 | 8, 16 | bitr3i 277 | . . 3 ⊢ (∀𝑧∀𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑧 → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦)) |
18 | 7, 17 | bitrdi 287 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑧(𝑧 ∈ (𝐹 “ 𝐵) → 𝑋 ∈ 𝑧) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
19 | 2, 18 | bitrid 283 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 ∩ cint 4951 “ cima 5680 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |