Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  socnv Structured version   Visualization version   GIF version

Theorem socnv 35726
Description: The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
socnv (𝑅 Or 𝐴𝑅 Or 𝐴)

Proof of Theorem socnv
StepHypRef Expression
1 cnvso 6319 . 2 (𝑅 Or 𝐴𝑅 Or 𝐴)
21biimpi 216 1 (𝑅 Or 𝐴𝑅 Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Or wor 5606  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-po 5607  df-so 5608  df-cnv 5708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator