Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  socnv Structured version   Visualization version   GIF version

Theorem socnv 35758
Description: The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
socnv (𝑅 Or 𝐴𝑅 Or 𝐴)

Proof of Theorem socnv
StepHypRef Expression
1 cnvso 6264 . 2 (𝑅 Or 𝐴𝑅 Or 𝐴)
21biimpi 216 1 (𝑅 Or 𝐴𝑅 Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Or wor 5548  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-po 5549  df-so 5550  df-cnv 5649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator