![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > socnv | Structured version Visualization version GIF version |
Description: The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
socnv | ⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvso 6319 | . 2 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5606 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-cnv 5708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |