| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > socnv | Structured version Visualization version GIF version | ||
| Description: The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| socnv | ⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvso 6308 | . 2 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5591 ◡ccnv 5684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-po 5592 df-so 5593 df-cnv 5693 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |