Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grstructd | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
Ref | Expression |
---|---|
gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
grstructd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
grstructd.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
grstructd.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
grstructd.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
grstructd.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
Ref | Expression |
---|---|
grstructd | ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grstructd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
2 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
3 | grstructd.f | . . . . 5 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
4 | grstructd.d | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
5 | funvtxdmge2val 27362 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (Vtx‘𝑆) = (Base‘𝑆)) | |
6 | 3, 4, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (Vtx‘𝑆) = (Base‘𝑆)) |
7 | grstructd.b | . . . 4 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
8 | 6, 7 | eqtrd 2779 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
9 | funiedgdmge2val 27363 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (iEdg‘𝑆) = (.ef‘𝑆)) | |
10 | 3, 4, 9 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆)) |
11 | grstructd.e | . . . 4 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
12 | 10, 11 | eqtrd 2779 | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = 𝐸) |
13 | 8, 12 | jca 511 | . 2 ⊢ (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)) |
14 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑔𝑆 | |
15 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) | |
16 | nfsbc1v 3739 | . . . 4 ⊢ Ⅎ𝑔[𝑆 / 𝑔]𝜓 | |
17 | 15, 16 | nfim 1902 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓) |
18 | fveqeq2 6777 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉)) | |
19 | fveqeq2 6777 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸)) | |
20 | 18, 19 | anbi12d 630 | . . . 4 ⊢ (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))) |
21 | sbceq1a 3730 | . . . 4 ⊢ (𝑔 = 𝑆 → (𝜓 ↔ [𝑆 / 𝑔]𝜓)) | |
22 | 20, 21 | imbi12d 344 | . . 3 ⊢ (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
23 | 14, 17, 22 | spcgf 3528 | . 2 ⊢ (𝑆 ∈ 𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
24 | 1, 2, 13, 23 | syl3c 66 | 1 ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2109 [wsbc 3719 ∖ cdif 3888 ∅c0 4261 {csn 4566 class class class wbr 5078 dom cdm 5588 Fun wfun 6424 ‘cfv 6430 ≤ cle 10994 2c2 12011 ♯chash 14025 Basecbs 16893 .efcedgf 27337 Vtxcvtx 27347 iEdgciedg 27348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 df-vtx 27349 df-iedg 27350 |
This theorem is referenced by: grstructeld 27385 |
Copyright terms: Public domain | W3C validator |