| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grstructd | Structured version Visualization version GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| Ref | Expression |
|---|---|
| gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
| gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| grstructd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| grstructd.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
| grstructd.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
| grstructd.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
| grstructd.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
| Ref | Expression |
|---|---|
| grstructd | ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grstructd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 2 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
| 3 | grstructd.f | . . . . 5 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
| 4 | grstructd.d | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
| 5 | funvtxdmge2val 28944 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (Vtx‘𝑆) = (Base‘𝑆)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (Vtx‘𝑆) = (Base‘𝑆)) |
| 7 | grstructd.b | . . . 4 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
| 8 | 6, 7 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 9 | funiedgdmge2val 28945 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (iEdg‘𝑆) = (.ef‘𝑆)) | |
| 10 | 3, 4, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆)) |
| 11 | grstructd.e | . . . 4 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
| 12 | 10, 11 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = 𝐸) |
| 13 | 8, 12 | jca 511 | . 2 ⊢ (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)) |
| 14 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑔𝑆 | |
| 15 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) | |
| 16 | nfsbc1v 3775 | . . . 4 ⊢ Ⅎ𝑔[𝑆 / 𝑔]𝜓 | |
| 17 | 15, 16 | nfim 1896 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓) |
| 18 | fveqeq2 6869 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉)) | |
| 19 | fveqeq2 6869 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸)) | |
| 20 | 18, 19 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))) |
| 21 | sbceq1a 3766 | . . . 4 ⊢ (𝑔 = 𝑆 → (𝜓 ↔ [𝑆 / 𝑔]𝜓)) | |
| 22 | 20, 21 | imbi12d 344 | . . 3 ⊢ (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 23 | 14, 17, 22 | spcgf 3560 | . 2 ⊢ (𝑆 ∈ 𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 24 | 1, 2, 13, 23 | syl3c 66 | 1 ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 [wsbc 3755 ∖ cdif 3913 ∅c0 4298 {csn 4591 class class class wbr 5109 dom cdm 5640 Fun wfun 6507 ‘cfv 6513 ≤ cle 11215 2c2 12242 ♯chash 14301 Basecbs 17185 .efcedgf 28921 Vtxcvtx 28929 iEdgciedg 28930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-fz 13475 df-hash 14302 df-vtx 28931 df-iedg 28932 |
| This theorem is referenced by: grstructeld 28967 |
| Copyright terms: Public domain | W3C validator |