![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grstructd | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
Ref | Expression |
---|---|
gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
grstructd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
grstructd.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
grstructd.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
grstructd.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
grstructd.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
Ref | Expression |
---|---|
grstructd | ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grstructd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
2 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
3 | grstructd.f | . . . . 5 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
4 | grstructd.d | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
5 | funvtxdmge2val 28535 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (Vtx‘𝑆) = (Base‘𝑆)) | |
6 | 3, 4, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (Vtx‘𝑆) = (Base‘𝑆)) |
7 | grstructd.b | . . . 4 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
8 | 6, 7 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
9 | funiedgdmge2val 28536 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (iEdg‘𝑆) = (.ef‘𝑆)) | |
10 | 3, 4, 9 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆)) |
11 | grstructd.e | . . . 4 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
12 | 10, 11 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = 𝐸) |
13 | 8, 12 | jca 511 | . 2 ⊢ (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)) |
14 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑔𝑆 | |
15 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) | |
16 | nfsbc1v 3798 | . . . 4 ⊢ Ⅎ𝑔[𝑆 / 𝑔]𝜓 | |
17 | 15, 16 | nfim 1898 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓) |
18 | fveqeq2 6901 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉)) | |
19 | fveqeq2 6901 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸)) | |
20 | 18, 19 | anbi12d 630 | . . . 4 ⊢ (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))) |
21 | sbceq1a 3789 | . . . 4 ⊢ (𝑔 = 𝑆 → (𝜓 ↔ [𝑆 / 𝑔]𝜓)) | |
22 | 20, 21 | imbi12d 343 | . . 3 ⊢ (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
23 | 14, 17, 22 | spcgf 3582 | . 2 ⊢ (𝑆 ∈ 𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
24 | 1, 2, 13, 23 | syl3c 66 | 1 ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 [wsbc 3778 ∖ cdif 3946 ∅c0 4323 {csn 4629 class class class wbr 5149 dom cdm 5677 Fun wfun 6538 ‘cfv 6544 ≤ cle 11254 2c2 12272 ♯chash 14295 Basecbs 17149 .efcedgf 28510 Vtxcvtx 28520 iEdgciedg 28521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-vtx 28522 df-iedg 28523 |
This theorem is referenced by: grstructeld 28558 |
Copyright terms: Public domain | W3C validator |