| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grstructd | Structured version Visualization version GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| Ref | Expression |
|---|---|
| gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
| gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| grstructd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| grstructd.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
| grstructd.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
| grstructd.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
| grstructd.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
| Ref | Expression |
|---|---|
| grstructd | ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grstructd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 2 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
| 3 | grstructd.f | . . . . 5 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
| 4 | grstructd.d | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
| 5 | funvtxdmge2val 28991 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (Vtx‘𝑆) = (Base‘𝑆)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (Vtx‘𝑆) = (Base‘𝑆)) |
| 7 | grstructd.b | . . . 4 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
| 8 | 6, 7 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 9 | funiedgdmge2val 28992 | . . . . 5 ⊢ ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (iEdg‘𝑆) = (.ef‘𝑆)) | |
| 10 | 3, 4, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆)) |
| 11 | grstructd.e | . . . 4 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
| 12 | 10, 11 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = 𝐸) |
| 13 | 8, 12 | jca 511 | . 2 ⊢ (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)) |
| 14 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑔𝑆 | |
| 15 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) | |
| 16 | nfsbc1v 3757 | . . . 4 ⊢ Ⅎ𝑔[𝑆 / 𝑔]𝜓 | |
| 17 | 15, 16 | nfim 1897 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓) |
| 18 | fveqeq2 6837 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉)) | |
| 19 | fveqeq2 6837 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸)) | |
| 20 | 18, 19 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))) |
| 21 | sbceq1a 3748 | . . . 4 ⊢ (𝑔 = 𝑆 → (𝜓 ↔ [𝑆 / 𝑔]𝜓)) | |
| 22 | 20, 21 | imbi12d 344 | . . 3 ⊢ (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 23 | 14, 17, 22 | spcgf 3542 | . 2 ⊢ (𝑆 ∈ 𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 24 | 1, 2, 13, 23 | syl3c 66 | 1 ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 [wsbc 3737 ∖ cdif 3895 ∅c0 4282 {csn 4575 class class class wbr 5093 dom cdm 5619 Fun wfun 6480 ‘cfv 6486 ≤ cle 11154 2c2 12187 ♯chash 14239 Basecbs 17122 .efcedgf 28968 Vtxcvtx 28976 iEdgciedg 28977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-hash 14240 df-vtx 28978 df-iedg 28979 |
| This theorem is referenced by: grstructeld 29014 |
| Copyright terms: Public domain | W3C validator |