MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grstructd Structured version   Visualization version   GIF version

Theorem grstructd 26823
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
Hypotheses
Ref Expression
gropd.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
gropd.v (𝜑𝑉𝑈)
gropd.e (𝜑𝐸𝑊)
grstructd.s (𝜑𝑆𝑋)
grstructd.f (𝜑 → Fun (𝑆 ∖ {∅}))
grstructd.d (𝜑 → 2 ≤ (♯‘dom 𝑆))
grstructd.b (𝜑 → (Base‘𝑆) = 𝑉)
grstructd.e (𝜑 → (.ef‘𝑆) = 𝐸)
Assertion
Ref Expression
grstructd (𝜑[𝑆 / 𝑔]𝜓)
Distinct variable groups:   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔   𝑆,𝑔
Allowed substitution hints:   𝜓(𝑔)   𝑈(𝑔)   𝑊(𝑔)   𝑋(𝑔)

Proof of Theorem grstructd
StepHypRef Expression
1 grstructd.s . 2 (𝜑𝑆𝑋)
2 gropd.g . 2 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
3 grstructd.f . . . . 5 (𝜑 → Fun (𝑆 ∖ {∅}))
4 grstructd.d . . . . 5 (𝜑 → 2 ≤ (♯‘dom 𝑆))
5 funvtxdmge2val 26802 . . . . 5 ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (Vtx‘𝑆) = (Base‘𝑆))
63, 4, 5syl2anc 587 . . . 4 (𝜑 → (Vtx‘𝑆) = (Base‘𝑆))
7 grstructd.b . . . 4 (𝜑 → (Base‘𝑆) = 𝑉)
86, 7eqtrd 2857 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
9 funiedgdmge2val 26803 . . . . 5 ((Fun (𝑆 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝑆)) → (iEdg‘𝑆) = (.ef‘𝑆))
103, 4, 9syl2anc 587 . . . 4 (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆))
11 grstructd.e . . . 4 (𝜑 → (.ef‘𝑆) = 𝐸)
1210, 11eqtrd 2857 . . 3 (𝜑 → (iEdg‘𝑆) = 𝐸)
138, 12jca 515 . 2 (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))
14 nfcv 2979 . . 3 𝑔𝑆
15 nfv 1915 . . . 4 𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)
16 nfsbc1v 3767 . . . 4 𝑔[𝑆 / 𝑔]𝜓
1715, 16nfim 1897 . . 3 𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓)
18 fveqeq2 6661 . . . . 5 (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉))
19 fveqeq2 6661 . . . . 5 (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸))
2018, 19anbi12d 633 . . . 4 (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)))
21 sbceq1a 3758 . . . 4 (𝑔 = 𝑆 → (𝜓[𝑆 / 𝑔]𝜓))
2220, 21imbi12d 348 . . 3 (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓)))
2314, 17, 22spcgf 3565 . 2 (𝑆𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓)))
241, 2, 13, 23syl3c 66 1 (𝜑[𝑆 / 𝑔]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2114  [wsbc 3747  cdif 3905  c0 4265  {csn 4539   class class class wbr 5042  dom cdm 5532  Fun wfun 6328  cfv 6334  cle 10665  2c2 11680  chash 13686  Basecbs 16474  .efcedgf 26780  Vtxcvtx 26787  iEdgciedg 26788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-vtx 26789  df-iedg 26790
This theorem is referenced by:  grstructeld  26825
  Copyright terms: Public domain W3C validator