MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropd Structured version   Visualization version   GIF version

Theorem gropd 29010
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropd.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
gropd.v (𝜑𝑉𝑈)
gropd.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropd (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Distinct variable groups:   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝜓(𝑔)   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropd
StepHypRef Expression
1 opex 5404 . . 3 𝑉, 𝐸⟩ ∈ V
21a1i 11 . 2 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ V)
3 gropd.g . 2 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
4 gropd.v . . 3 (𝜑𝑉𝑈)
5 gropd.e . . 3 (𝜑𝐸𝑊)
6 opvtxfv 28983 . . . 4 ((𝑉𝑈𝐸𝑊) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
7 opiedgfv 28986 . . . 4 ((𝑉𝑈𝐸𝑊) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
86, 7jca 511 . . 3 ((𝑉𝑈𝐸𝑊) → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
94, 5, 8syl2anc 584 . 2 (𝜑 → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
10 nfcv 2894 . . 3 𝑔𝑉, 𝐸
11 nfv 1915 . . . 4 𝑔((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
12 nfsbc1v 3761 . . . 4 𝑔[𝑉, 𝐸⟩ / 𝑔]𝜓
1311, 12nfim 1897 . . 3 𝑔(((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)
14 fveqeq2 6831 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉))
15 fveqeq2 6831 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
1614, 15anbi12d 632 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)))
17 sbceq1a 3752 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (𝜓[𝑉, 𝐸⟩ / 𝑔]𝜓))
1816, 17imbi12d 344 . . 3 (𝑔 = ⟨𝑉, 𝐸⟩ → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
1910, 13, 18spcgf 3546 . 2 (⟨𝑉, 𝐸⟩ ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
202, 3, 9, 19syl3c 66 1 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436  [wsbc 3741  cop 4582  cfv 6481  Vtxcvtx 28975  iEdgciedg 28976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922  df-vtx 28977  df-iedg 28978
This theorem is referenced by:  gropeld  29012
  Copyright terms: Public domain W3C validator