Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gropd | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
gropd | ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5379 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ V) |
3 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
4 | gropd.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
5 | gropd.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | opvtxfv 27374 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
7 | opiedgfv 27377 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
8 | 6, 7 | jca 512 | . . 3 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
9 | 4, 5, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
10 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑔〈𝑉, 𝐸〉 | |
11 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
12 | nfsbc1v 3736 | . . . 4 ⊢ Ⅎ𝑔[〈𝑉, 𝐸〉 / 𝑔]𝜓 | |
13 | 11, 12 | nfim 1899 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
14 | fveqeq2 6783 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘〈𝑉, 𝐸〉) = 𝑉)) | |
15 | fveqeq2 6783 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) | |
16 | 14, 15 | anbi12d 631 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸))) |
17 | sbceq1a 3727 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (𝜓 ↔ [〈𝑉, 𝐸〉 / 𝑔]𝜓)) | |
18 | 16, 17 | imbi12d 345 | . . 3 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
19 | 10, 13, 18 | spcgf 3530 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
20 | 2, 3, 9, 19 | syl3c 66 | 1 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 〈cop 4567 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 df-vtx 27368 df-iedg 27369 |
This theorem is referenced by: gropeld 27403 |
Copyright terms: Public domain | W3C validator |