![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gropd | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair ⟨𝑉, 𝐸⟩ of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
gropd | ⊢ (𝜑 → [⟨𝑉, 𝐸⟩ / 𝑔]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5465 | . . 3 ⊢ ⟨𝑉, 𝐸⟩ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ⟨𝑉, 𝐸⟩ ∈ V) |
3 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
4 | gropd.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
5 | gropd.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | opvtxfv 28529 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉) | |
7 | opiedgfv 28532 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) | |
8 | 6, 7 | jca 510 | . . 3 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)) |
9 | 4, 5, 8 | syl2anc 582 | . 2 ⊢ (𝜑 → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)) |
10 | nfcv 2901 | . . 3 ⊢ Ⅎ𝑔⟨𝑉, 𝐸⟩ | |
11 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) | |
12 | nfsbc1v 3798 | . . . 4 ⊢ Ⅎ𝑔[⟨𝑉, 𝐸⟩ / 𝑔]𝜓 | |
13 | 11, 12 | nfim 1897 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [⟨𝑉, 𝐸⟩ / 𝑔]𝜓) |
14 | fveqeq2 6901 | . . . . 5 ⊢ (𝑔 = ⟨𝑉, 𝐸⟩ → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)) | |
15 | fveqeq2 6901 | . . . . 5 ⊢ (𝑔 = ⟨𝑉, 𝐸⟩ → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)) | |
16 | 14, 15 | anbi12d 629 | . . . 4 ⊢ (𝑔 = ⟨𝑉, 𝐸⟩ → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))) |
17 | sbceq1a 3789 | . . . 4 ⊢ (𝑔 = ⟨𝑉, 𝐸⟩ → (𝜓 ↔ [⟨𝑉, 𝐸⟩ / 𝑔]𝜓)) | |
18 | 16, 17 | imbi12d 343 | . . 3 ⊢ (𝑔 = ⟨𝑉, 𝐸⟩ → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [⟨𝑉, 𝐸⟩ / 𝑔]𝜓))) |
19 | 10, 13, 18 | spcgf 3582 | . 2 ⊢ (⟨𝑉, 𝐸⟩ ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [⟨𝑉, 𝐸⟩ / 𝑔]𝜓))) |
20 | 2, 3, 9, 19 | syl3c 66 | 1 ⊢ (𝜑 → [⟨𝑉, 𝐸⟩ / 𝑔]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 Vcvv 3472 [wsbc 3778 ⟨cop 4635 ‘cfv 6544 Vtxcvtx 28521 iEdgciedg 28522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7979 df-2nd 7980 df-vtx 28523 df-iedg 28524 |
This theorem is referenced by: gropeld 28558 |
Copyright terms: Public domain | W3C validator |