MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropd Structured version   Visualization version   GIF version

Theorem gropd 26818
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropd.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
gropd.v (𝜑𝑉𝑈)
gropd.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropd (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Distinct variable groups:   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝜓(𝑔)   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropd
StepHypRef Expression
1 opex 5358 . . 3 𝑉, 𝐸⟩ ∈ V
21a1i 11 . 2 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ V)
3 gropd.g . 2 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
4 gropd.v . . 3 (𝜑𝑉𝑈)
5 gropd.e . . 3 (𝜑𝐸𝑊)
6 opvtxfv 26791 . . . 4 ((𝑉𝑈𝐸𝑊) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
7 opiedgfv 26794 . . . 4 ((𝑉𝑈𝐸𝑊) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
86, 7jca 514 . . 3 ((𝑉𝑈𝐸𝑊) → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
94, 5, 8syl2anc 586 . 2 (𝜑 → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
10 nfcv 2979 . . 3 𝑔𝑉, 𝐸
11 nfv 1915 . . . 4 𝑔((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
12 nfsbc1v 3794 . . . 4 𝑔[𝑉, 𝐸⟩ / 𝑔]𝜓
1311, 12nfim 1897 . . 3 𝑔(((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)
14 fveqeq2 6681 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉))
15 fveqeq2 6681 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
1614, 15anbi12d 632 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)))
17 sbceq1a 3785 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (𝜓[𝑉, 𝐸⟩ / 𝑔]𝜓))
1816, 17imbi12d 347 . . 3 (𝑔 = ⟨𝑉, 𝐸⟩ → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
1910, 13, 18spcgf 3592 . 2 (⟨𝑉, 𝐸⟩ ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
202, 3, 9, 19syl3c 66 1 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1535   = wceq 1537  wcel 2114  Vcvv 3496  [wsbc 3774  cop 4575  cfv 6357  Vtxcvtx 26783  iEdgciedg 26784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fv 6365  df-1st 7691  df-2nd 7692  df-vtx 26785  df-iedg 26786
This theorem is referenced by:  gropeld  26820
  Copyright terms: Public domain W3C validator