Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gropd | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
gropd | ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ V) |
3 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
4 | gropd.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
5 | gropd.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | opvtxfv 27277 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
7 | opiedgfv 27280 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
8 | 6, 7 | jca 511 | . . 3 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
9 | 4, 5, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
10 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑔〈𝑉, 𝐸〉 | |
11 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
12 | nfsbc1v 3731 | . . . 4 ⊢ Ⅎ𝑔[〈𝑉, 𝐸〉 / 𝑔]𝜓 | |
13 | 11, 12 | nfim 1900 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
14 | fveqeq2 6765 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘〈𝑉, 𝐸〉) = 𝑉)) | |
15 | fveqeq2 6765 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) | |
16 | 14, 15 | anbi12d 630 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸))) |
17 | sbceq1a 3722 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (𝜓 ↔ [〈𝑉, 𝐸〉 / 𝑔]𝜓)) | |
18 | 16, 17 | imbi12d 344 | . . 3 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
19 | 10, 13, 18 | spcgf 3520 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
20 | 2, 3, 9, 19 | syl3c 66 | 1 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 〈cop 4564 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 df-vtx 27271 df-iedg 27272 |
This theorem is referenced by: gropeld 27306 |
Copyright terms: Public domain | W3C validator |