MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropd Structured version   Visualization version   GIF version

Theorem gropd 27304
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropd.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
gropd.v (𝜑𝑉𝑈)
gropd.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropd (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Distinct variable groups:   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝜓(𝑔)   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropd
StepHypRef Expression
1 opex 5373 . . 3 𝑉, 𝐸⟩ ∈ V
21a1i 11 . 2 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ V)
3 gropd.g . 2 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
4 gropd.v . . 3 (𝜑𝑉𝑈)
5 gropd.e . . 3 (𝜑𝐸𝑊)
6 opvtxfv 27277 . . . 4 ((𝑉𝑈𝐸𝑊) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
7 opiedgfv 27280 . . . 4 ((𝑉𝑈𝐸𝑊) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
86, 7jca 511 . . 3 ((𝑉𝑈𝐸𝑊) → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
94, 5, 8syl2anc 583 . 2 (𝜑 → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
10 nfcv 2906 . . 3 𝑔𝑉, 𝐸
11 nfv 1918 . . . 4 𝑔((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
12 nfsbc1v 3731 . . . 4 𝑔[𝑉, 𝐸⟩ / 𝑔]𝜓
1311, 12nfim 1900 . . 3 𝑔(((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)
14 fveqeq2 6765 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉))
15 fveqeq2 6765 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
1614, 15anbi12d 630 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)))
17 sbceq1a 3722 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (𝜓[𝑉, 𝐸⟩ / 𝑔]𝜓))
1816, 17imbi12d 344 . . 3 (𝑔 = ⟨𝑉, 𝐸⟩ → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
1910, 13, 18spcgf 3520 . 2 (⟨𝑉, 𝐸⟩ ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
202, 3, 9, 19syl3c 66 1 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  cop 4564  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805  df-vtx 27271  df-iedg 27272
This theorem is referenced by:  gropeld  27306
  Copyright terms: Public domain W3C validator