| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gropd | Structured version Visualization version GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
| gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| gropd | ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5424 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ V) |
| 3 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
| 4 | gropd.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
| 5 | gropd.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 6 | opvtxfv 28931 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 7 | opiedgfv 28934 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
| 9 | 4, 5, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
| 10 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑔〈𝑉, 𝐸〉 | |
| 11 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 12 | nfsbc1v 3773 | . . . 4 ⊢ Ⅎ𝑔[〈𝑉, 𝐸〉 / 𝑔]𝜓 | |
| 13 | 11, 12 | nfim 1896 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
| 14 | fveqeq2 6867 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘〈𝑉, 𝐸〉) = 𝑉)) | |
| 15 | fveqeq2 6867 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) | |
| 16 | 14, 15 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸))) |
| 17 | sbceq1a 3764 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (𝜓 ↔ [〈𝑉, 𝐸〉 / 𝑔]𝜓)) | |
| 18 | 16, 17 | imbi12d 344 | . . 3 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
| 19 | 10, 13, 18 | spcgf 3557 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
| 20 | 2, 3, 9, 19 | syl3c 66 | 1 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3447 [wsbc 3753 〈cop 4595 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-2nd 7969 df-vtx 28925 df-iedg 28926 |
| This theorem is referenced by: gropeld 28960 |
| Copyright terms: Public domain | W3C validator |