Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropd Structured version   Visualization version   GIF version

Theorem gropd 26820
 Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair ⟨𝑉, 𝐸⟩ of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropd.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
gropd.v (𝜑𝑉𝑈)
gropd.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropd (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
Distinct variable groups:   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝜓(𝑔)   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropd
StepHypRef Expression
1 opex 5343 . . 3 𝑉, 𝐸⟩ ∈ V
21a1i 11 . 2 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ V)
3 gropd.g . 2 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))
4 gropd.v . . 3 (𝜑𝑉𝑈)
5 gropd.e . . 3 (𝜑𝐸𝑊)
6 opvtxfv 26793 . . . 4 ((𝑉𝑈𝐸𝑊) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
7 opiedgfv 26796 . . . 4 ((𝑉𝑈𝐸𝑊) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
86, 7jca 515 . . 3 ((𝑉𝑈𝐸𝑊) → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
94, 5, 8syl2anc 587 . 2 (𝜑 → ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
10 nfcv 2982 . . 3 𝑔𝑉, 𝐸
11 nfv 1916 . . . 4 𝑔((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
12 nfsbc1v 3778 . . . 4 𝑔[𝑉, 𝐸⟩ / 𝑔]𝜓
1311, 12nfim 1898 . . 3 𝑔(((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)
14 fveqeq2 6667 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉))
15 fveqeq2 6667 . . . . 5 (𝑔 = ⟨𝑉, 𝐸⟩ → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸))
1614, 15anbi12d 633 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)))
17 sbceq1a 3769 . . . 4 (𝑔 = ⟨𝑉, 𝐸⟩ → (𝜓[𝑉, 𝐸⟩ / 𝑔]𝜓))
1816, 17imbi12d 348 . . 3 (𝑔 = ⟨𝑉, 𝐸⟩ → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
1910, 13, 18spcgf 3576 . 2 (⟨𝑉, 𝐸⟩ ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 ∧ (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) → [𝑉, 𝐸⟩ / 𝑔]𝜓)))
202, 3, 9, 19syl3c 66 1 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2115  Vcvv 3480  [wsbc 3758  ⟨cop 4555  ‘cfv 6343  Vtxcvtx 26785  iEdgciedg 26786 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fv 6351  df-1st 7679  df-2nd 7680  df-vtx 26787  df-iedg 26788 This theorem is referenced by:  gropeld  26822
 Copyright terms: Public domain W3C validator