| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj864 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35041. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj864.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj864.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj864.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj864.4 | ⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
| bnj864.5 | ⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| bnj864 | ⊢ (𝜒 → ∃!𝑓𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj864.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 2 | bnj864.2 | . . . . 5 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 3 | bnj864.3 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 4 | 1, 2, 3 | bnj852 34952 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 5 | df-ral 3052 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
| 6 | 5 | imbi2i 336 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) |
| 7 | 19.21v 1939 | . . . . 5 ⊢ (∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) | |
| 8 | impexp 450 | . . . . . . 7 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) | |
| 9 | df-3an 1088 | . . . . . . . . 9 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) | |
| 10 | 9 | bicomi 224 | . . . . . . . 8 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
| 11 | 10 | imbi1i 349 | . . . . . . 7 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 12 | 8, 11 | bitr3i 277 | . . . . . 6 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 13 | 12 | albii 1819 | . . . . 5 ⊢ (∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 14 | 6, 7, 13 | 3bitr2i 299 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 15 | 4, 14 | mpbi 230 | . . 3 ⊢ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 16 | 15 | spi 2184 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 17 | bnj864.4 | . 2 ⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) | |
| 18 | bnj864.5 | . . 3 ⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 19 | 18 | eubii 2584 | . 2 ⊢ (∃!𝑓𝜃 ↔ ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 20 | 16, 17, 19 | 3imtr4i 292 | 1 ⊢ (𝜒 → ∃!𝑓𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∃!weu 2567 ∀wral 3051 ∖ cdif 3923 ∅c0 4308 {csn 4601 ∪ ciun 4967 suc csuc 6354 Fn wfn 6526 ‘cfv 6531 ωcom 7861 predc-bnj14 34719 FrSe w-bnj15 34723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-bnj17 34718 df-bnj14 34720 df-bnj13 34722 df-bnj15 34724 |
| This theorem is referenced by: bnj849 34956 |
| Copyright terms: Public domain | W3C validator |