Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj864 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj864.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj864.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj864.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj864.4 | ⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
bnj864.5 | ⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Ref | Expression |
---|---|
bnj864 | ⊢ (𝜒 → ∃!𝑓𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj864.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj864.2 | . . . . 5 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj864.3 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
4 | 1, 2, 3 | bnj852 32901 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
5 | df-ral 3069 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
6 | 5 | imbi2i 336 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) |
7 | 19.21v 1942 | . . . . 5 ⊢ (∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) | |
8 | impexp 451 | . . . . . . 7 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) | |
9 | df-3an 1088 | . . . . . . . . 9 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) | |
10 | 9 | bicomi 223 | . . . . . . . 8 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
11 | 10 | imbi1i 350 | . . . . . . 7 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
12 | 8, 11 | bitr3i 276 | . . . . . 6 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
13 | 12 | albii 1822 | . . . . 5 ⊢ (∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
14 | 6, 7, 13 | 3bitr2i 299 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
15 | 4, 14 | mpbi 229 | . . 3 ⊢ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
16 | 15 | spi 2177 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
17 | bnj864.4 | . 2 ⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) | |
18 | bnj864.5 | . . 3 ⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
19 | 18 | eubii 2585 | . 2 ⊢ (∃!𝑓𝜃 ↔ ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
20 | 16, 17, 19 | 3imtr4i 292 | 1 ⊢ (𝜒 → ∃!𝑓𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 ∀wral 3064 ∖ cdif 3884 ∅c0 4256 {csn 4561 ∪ ciun 4924 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 predc-bnj14 32667 FrSe w-bnj15 32671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-bnj17 32666 df-bnj14 32668 df-bnj13 32670 df-bnj15 32672 |
This theorem is referenced by: bnj849 32905 |
Copyright terms: Public domain | W3C validator |