![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj864 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34550. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj864.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj864.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj864.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj864.4 | ⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
bnj864.5 | ⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Ref | Expression |
---|---|
bnj864 | ⊢ (𝜒 → ∃!𝑓𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj864.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj864.2 | . . . . 5 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj864.3 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
4 | 1, 2, 3 | bnj852 34461 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
5 | df-ral 3056 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
6 | 5 | imbi2i 336 | . . . . 5 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) |
7 | 19.21v 1934 | . . . . 5 ⊢ (∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛(𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) | |
8 | impexp 450 | . . . . . . 7 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) | |
9 | df-3an 1086 | . . . . . . . . 9 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) | |
10 | 9 | bicomi 223 | . . . . . . . 8 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
11 | 10 | imbi1i 349 | . . . . . . 7 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
12 | 8, 11 | bitr3i 277 | . . . . . 6 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
13 | 12 | albii 1813 | . . . . 5 ⊢ (∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑛 ∈ 𝐷 → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
14 | 6, 7, 13 | 3bitr2i 299 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ 𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
15 | 4, 14 | mpbi 229 | . . 3 ⊢ ∀𝑛((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
16 | 15 | spi 2169 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
17 | bnj864.4 | . 2 ⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) | |
18 | bnj864.5 | . . 3 ⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
19 | 18 | eubii 2573 | . 2 ⊢ (∃!𝑓𝜃 ↔ ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
20 | 16, 17, 19 | 3imtr4i 292 | 1 ⊢ (𝜒 → ∃!𝑓𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∃!weu 2556 ∀wral 3055 ∖ cdif 3940 ∅c0 4317 {csn 4623 ∪ ciun 4990 suc csuc 6359 Fn wfn 6531 ‘cfv 6536 ωcom 7851 predc-bnj14 34228 FrSe w-bnj15 34232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7852 df-1o 8464 df-bnj17 34227 df-bnj14 34229 df-bnj13 34231 df-bnj15 34233 |
This theorem is referenced by: bnj849 34465 |
Copyright terms: Public domain | W3C validator |