Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj864 Structured version   Visualization version   GIF version

Theorem bnj864 33201
Description: Technical lemma for bnj69 33289. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj864.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj864.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj864.3 𝐷 = (ω ∖ {∅})
bnj864.4 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj864.5 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
Assertion
Ref Expression
bnj864 (𝜒 → ∃!𝑓𝜃)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj864
StepHypRef Expression
1 bnj864.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj864.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj864.3 . . . . 5 𝐷 = (ω ∖ {∅})
41, 2, 3bnj852 33200 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
5 df-ral 3062 . . . . . 6 (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛(𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
65imbi2i 335 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
7 19.21v 1941 . . . . 5 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
8 impexp 451 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
9 df-3an 1088 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
109bicomi 223 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
1110imbi1i 349 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
128, 11bitr3i 276 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
1312albii 1820 . . . . 5 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
146, 7, 133bitr2i 298 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
154, 14mpbi 229 . . 3 𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
1615spi 2176 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
17 bnj864.4 . 2 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
18 bnj864.5 . . 3 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
1918eubii 2583 . 2 (∃!𝑓𝜃 ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
2016, 17, 193imtr4i 291 1 (𝜒 → ∃!𝑓𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1538   = wceq 1540  wcel 2105  ∃!weu 2566  wral 3061  cdif 3895  c0 4269  {csn 4573   ciun 4941  suc csuc 6304   Fn wfn 6474  cfv 6479  ωcom 7780   predc-bnj14 32967   FrSe w-bnj15 32971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-reg 9449  ax-inf2 9498
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-om 7781  df-1o 8367  df-bnj17 32966  df-bnj14 32968  df-bnj13 32970  df-bnj15 32972
This theorem is referenced by:  bnj849  33204
  Copyright terms: Public domain W3C validator