| Step | Hyp | Ref
| Expression |
| 1 | | fveqeq2 6890 |
. . . . . 6
⊢ (𝑎 = ran 𝑧 → ((♯‘𝑎) = 𝐾 ↔ (♯‘ran 𝑧) = 𝐾)) |
| 2 | | fzfid 13996 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (1...𝑁) ∈ Fin) |
| 3 | | eleq1w 2818 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑧 → (𝑓 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 4 | | feq1 6691 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑧 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑧:(1...𝐾)⟶(1...𝑁))) |
| 5 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑧 → (𝑓‘𝑥) = (𝑧‘𝑥)) |
| 6 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑧 → (𝑓‘𝑦) = (𝑧‘𝑦)) |
| 7 | 5, 6 | breq12d 5137 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑧 → ((𝑓‘𝑥) < (𝑓‘𝑦) ↔ (𝑧‘𝑥) < (𝑧‘𝑦))) |
| 8 | 7 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑧 → ((𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ (𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))) |
| 9 | 8 | ralbidv 3164 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑧 → (∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))) |
| 10 | 9 | ralbidv 3164 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑧 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))) |
| 11 | 4, 10 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑧 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) ↔ (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦))))) |
| 12 | 3, 11 | bibi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑧 → ((𝑓 ∈ 𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))) ↔ (𝑧 ∈ 𝐴 ↔ (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))))) |
| 13 | | sticksstones2.4 |
. . . . . . . . . . . . . 14
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| 14 | | eqabb 2875 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ↔ ∀𝑓(𝑓 ∈ 𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))))) |
| 15 | 13, 14 | mpbi 230 |
. . . . . . . . . . . . 13
⊢
∀𝑓(𝑓 ∈ 𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))) |
| 16 | 15 | spi 2185 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ 𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))) |
| 17 | 12, 16 | chvarvv 1989 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 ↔ (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))) |
| 18 | 17 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 → (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))) |
| 19 | 18 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)))) |
| 20 | 19 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧:(1...𝐾)⟶(1...𝑁)) |
| 21 | 20 | frnd 6719 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ran 𝑧 ⊆ (1...𝑁)) |
| 22 | 2, 21 | sselpwd 5303 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ran 𝑧 ∈ 𝒫 (1...𝑁)) |
| 23 | 20 | ffnd 6712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 Fn (1...𝐾)) |
| 24 | | hashfn 14398 |
. . . . . . . . . . 11
⊢ (𝑧 Fn (1...𝐾) → (♯‘𝑧) = (♯‘(1...𝐾))) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (♯‘𝑧) = (♯‘(1...𝐾))) |
| 26 | | sticksstones2.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐾 ∈
ℕ0) |
| 28 | | hashfz1 14369 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ0
→ (♯‘(1...𝐾)) = 𝐾) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (♯‘(1...𝐾)) = 𝐾) |
| 30 | 25, 29 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (♯‘𝑧) = 𝐾) |
| 31 | 30 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐾 = (♯‘𝑧)) |
| 32 | | fzfid 13996 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (1...𝐾) ∈ Fin) |
| 33 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (1...𝐾) → 𝑎 ∈ ℕ) |
| 34 | 33 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → 𝑎 ∈ ℕ) |
| 35 | 34 | nnred 12260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → 𝑎 ∈ ℝ) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → 𝑎 ∈ ℝ) |
| 37 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ (1...𝐾) → 𝑏 ∈ ℕ) |
| 38 | 37 | nnred 12260 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ (1...𝐾) → 𝑏 ∈ ℝ) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → 𝑏 ∈ ℝ) |
| 40 | | lttri2 11322 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) |
| 41 | 36, 39, 40 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) |
| 42 | 20 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → 𝑧:(1...𝐾)⟶(1...𝑁)) |
| 43 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → 𝑎 ∈ (1...𝐾)) |
| 44 | 42, 43 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → (𝑧‘𝑎) ∈ (1...𝑁)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑧‘𝑎) ∈ (1...𝑁)) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑎 < 𝑏) → (𝑧‘𝑎) ∈ (1...𝑁)) |
| 47 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧‘𝑎) ∈ (1...𝑁) → (𝑧‘𝑎) ∈ ℕ) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑎 < 𝑏) → (𝑧‘𝑎) ∈ ℕ) |
| 49 | 48 | nnred 12260 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑎 < 𝑏) → (𝑧‘𝑎) ∈ ℝ) |
| 50 | 19 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦))) |
| 51 | 50 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦))) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦))) |
| 53 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → 𝑎 ∈ (1...𝐾)) |
| 54 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → 𝑏 ∈ (1...𝐾)) |
| 55 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑎 → (𝑥 < 𝑦 ↔ 𝑎 < 𝑦)) |
| 56 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑎 → (𝑧‘𝑥) = (𝑧‘𝑎)) |
| 57 | 56 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑎 → ((𝑧‘𝑥) < (𝑧‘𝑦) ↔ (𝑧‘𝑎) < (𝑧‘𝑦))) |
| 58 | 55, 57 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑎 → ((𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)) ↔ (𝑎 < 𝑦 → (𝑧‘𝑎) < (𝑧‘𝑦)))) |
| 59 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑏 → (𝑎 < 𝑦 ↔ 𝑎 < 𝑏)) |
| 60 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑏 → (𝑧‘𝑦) = (𝑧‘𝑏)) |
| 61 | 60 | breq2d 5136 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑏 → ((𝑧‘𝑎) < (𝑧‘𝑦) ↔ (𝑧‘𝑎) < (𝑧‘𝑏))) |
| 62 | 59, 61 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑏 → ((𝑎 < 𝑦 → (𝑧‘𝑎) < (𝑧‘𝑦)) ↔ (𝑎 < 𝑏 → (𝑧‘𝑎) < (𝑧‘𝑏)))) |
| 63 | 58, 62 | rspc2v 3617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ (1...𝐾) ∧ 𝑏 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)) → (𝑎 < 𝑏 → (𝑧‘𝑎) < (𝑧‘𝑏)))) |
| 64 | 53, 54, 63 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)) → (𝑎 < 𝑏 → (𝑧‘𝑎) < (𝑧‘𝑏)))) |
| 65 | 52, 64 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑎 < 𝑏 → (𝑧‘𝑎) < (𝑧‘𝑏))) |
| 66 | 65 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑎 < 𝑏) → (𝑧‘𝑎) < (𝑧‘𝑏)) |
| 67 | 49, 66 | ltned 11376 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑎 < 𝑏) → (𝑧‘𝑎) ≠ (𝑧‘𝑏)) |
| 68 | 42 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑧‘𝑏) ∈ (1...𝑁)) |
| 69 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧‘𝑏) ∈ (1...𝑁) → (𝑧‘𝑏) ∈ ℕ) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑧‘𝑏) ∈ ℕ) |
| 71 | 70 | nnred 12260 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑧‘𝑏) ∈ ℝ) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑏 < 𝑎) → (𝑧‘𝑏) ∈ ℝ) |
| 73 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑏 → (𝑥 < 𝑦 ↔ 𝑏 < 𝑦)) |
| 74 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑏 → (𝑧‘𝑥) = (𝑧‘𝑏)) |
| 75 | 74 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑏 → ((𝑧‘𝑥) < (𝑧‘𝑦) ↔ (𝑧‘𝑏) < (𝑧‘𝑦))) |
| 76 | 73, 75 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑏 → ((𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)) ↔ (𝑏 < 𝑦 → (𝑧‘𝑏) < (𝑧‘𝑦)))) |
| 77 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑎 → (𝑏 < 𝑦 ↔ 𝑏 < 𝑎)) |
| 78 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑎 → (𝑧‘𝑦) = (𝑧‘𝑎)) |
| 79 | 78 | breq2d 5136 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑎 → ((𝑧‘𝑏) < (𝑧‘𝑦) ↔ (𝑧‘𝑏) < (𝑧‘𝑎))) |
| 80 | 77, 79 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑎 → ((𝑏 < 𝑦 → (𝑧‘𝑏) < (𝑧‘𝑦)) ↔ (𝑏 < 𝑎 → (𝑧‘𝑏) < (𝑧‘𝑎)))) |
| 81 | 76, 80 | rspc2v 3617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ (1...𝐾) ∧ 𝑎 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)) → (𝑏 < 𝑎 → (𝑧‘𝑏) < (𝑧‘𝑎)))) |
| 82 | 54, 53, 81 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑧‘𝑥) < (𝑧‘𝑦)) → (𝑏 < 𝑎 → (𝑧‘𝑏) < (𝑧‘𝑎)))) |
| 83 | 52, 82 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑏 < 𝑎 → (𝑧‘𝑏) < (𝑧‘𝑎))) |
| 84 | 83 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑏 < 𝑎) → (𝑧‘𝑏) < (𝑧‘𝑎)) |
| 85 | 72, 84 | ltned 11376 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑏 < 𝑎) → (𝑧‘𝑏) ≠ (𝑧‘𝑎)) |
| 86 | 85 | necomd 2988 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ 𝑏 < 𝑎) → (𝑧‘𝑎) ≠ (𝑧‘𝑏)) |
| 87 | 67, 86 | jaodan 959 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) ∧ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎)) → (𝑧‘𝑎) ≠ (𝑧‘𝑏)) |
| 88 | 87 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → (𝑧‘𝑎) ≠ (𝑧‘𝑏))) |
| 89 | 41, 88 | sylbid 240 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → (𝑎 ≠ 𝑏 → (𝑧‘𝑎) ≠ (𝑧‘𝑏))) |
| 90 | 89 | necon4d 2957 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) ∧ 𝑏 ∈ (1...𝐾)) → ((𝑧‘𝑎) = (𝑧‘𝑏) → 𝑎 = 𝑏)) |
| 91 | 90 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ (1...𝐾)) → ∀𝑏 ∈ (1...𝐾)((𝑧‘𝑎) = (𝑧‘𝑏) → 𝑎 = 𝑏)) |
| 92 | 91 | 3expa 1118 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑎 ∈ (1...𝐾)) → ∀𝑏 ∈ (1...𝐾)((𝑧‘𝑎) = (𝑧‘𝑏) → 𝑎 = 𝑏)) |
| 93 | 92 | ralrimiva 3133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑎 ∈ (1...𝐾)∀𝑏 ∈ (1...𝐾)((𝑧‘𝑎) = (𝑧‘𝑏) → 𝑎 = 𝑏)) |
| 94 | 20, 93 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑎 ∈ (1...𝐾)∀𝑏 ∈ (1...𝐾)((𝑧‘𝑎) = (𝑧‘𝑏) → 𝑎 = 𝑏))) |
| 95 | | dff13 7252 |
. . . . . . . . . 10
⊢ (𝑧:(1...𝐾)–1-1→(1...𝑁) ↔ (𝑧:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑎 ∈ (1...𝐾)∀𝑏 ∈ (1...𝐾)((𝑧‘𝑎) = (𝑧‘𝑏) → 𝑎 = 𝑏))) |
| 96 | 94, 95 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧:(1...𝐾)–1-1→(1...𝑁)) |
| 97 | | hashf1rn 14375 |
. . . . . . . . 9
⊢
(((1...𝐾) ∈ Fin
∧ 𝑧:(1...𝐾)–1-1→(1...𝑁)) → (♯‘𝑧) = (♯‘ran 𝑧)) |
| 98 | 32, 96, 97 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (♯‘𝑧) = (♯‘ran 𝑧)) |
| 99 | 31, 98 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐾 = (♯‘ran 𝑧)) |
| 100 | 99 | eqcomd 2742 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (♯‘ran 𝑧) = 𝐾) |
| 101 | 1, 22, 100 | elrabd 3678 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ran 𝑧 ∈ {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}) |
| 102 | | sticksstones2.3 |
. . . . . . 7
⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} |
| 103 | 102 | eleq2i 2827 |
. . . . . 6
⊢ (ran
𝑧 ∈ 𝐵 ↔ ran 𝑧 ∈ {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}) |
| 104 | 103 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (ran 𝑧 ∈ 𝐵 ↔ ran 𝑧 ∈ {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾})) |
| 105 | 101, 104 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ran 𝑧 ∈ 𝐵) |
| 106 | | sticksstones2.5 |
. . . 4
⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ ran 𝑧) |
| 107 | 105, 106 | fmptd 7109 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 108 | | sticksstones2.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 109 | 108 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → 𝑁 ∈
ℕ0) |
| 110 | 109 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝑁 ∈
ℕ0) |
| 111 | 26 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → 𝐾 ∈
ℕ0) |
| 112 | 111 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝐾 ∈
ℕ0) |
| 113 | | simpl2 1193 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝐴) |
| 114 | | simpl3 1194 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝐴) |
| 115 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝑖 ≠ 𝑗) |
| 116 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → (𝑖‘𝑟) = (𝑖‘𝑠)) |
| 117 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → (𝑗‘𝑟) = (𝑗‘𝑠)) |
| 118 | 116, 117 | neeq12d 2994 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑠 → ((𝑖‘𝑟) ≠ (𝑗‘𝑟) ↔ (𝑖‘𝑠) ≠ (𝑗‘𝑠))) |
| 119 | 118 | cbvrabv 3431 |
. . . . . . . . . . 11
⊢ {𝑟 ∈ (1...𝐾) ∣ (𝑖‘𝑟) ≠ (𝑗‘𝑟)} = {𝑠 ∈ (1...𝐾) ∣ (𝑖‘𝑠) ≠ (𝑗‘𝑠)} |
| 120 | 119 | infeq1i 9496 |
. . . . . . . . . 10
⊢
inf({𝑟 ∈
(1...𝐾) ∣ (𝑖‘𝑟) ≠ (𝑗‘𝑟)}, ℝ, < ) = inf({𝑠 ∈ (1...𝐾) ∣ (𝑖‘𝑠) ≠ (𝑗‘𝑠)}, ℝ, < ) |
| 121 | 110, 112,
13, 113, 114, 115, 120 | sticksstones1 42164 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → ran 𝑖 ≠ ran 𝑗) |
| 122 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝐹 = (𝑧 ∈ 𝐴 ↦ ran 𝑧)) |
| 123 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) ∧ 𝑧 = 𝑖) → 𝑧 = 𝑖) |
| 124 | 123 | rneqd 5923 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) ∧ 𝑧 = 𝑖) → ran 𝑧 = ran 𝑖) |
| 125 | | fzfid 13996 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → (1...𝑁) ∈ Fin) |
| 126 | | eleq1w 2818 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑖 → (𝑓 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
| 127 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑖 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑖:(1...𝐾)⟶(1...𝑁))) |
| 128 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑖 → (𝑓‘𝑥) = (𝑖‘𝑥)) |
| 129 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑖 → (𝑓‘𝑦) = (𝑖‘𝑦)) |
| 130 | 128, 129 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑖 → ((𝑓‘𝑥) < (𝑓‘𝑦) ↔ (𝑖‘𝑥) < (𝑖‘𝑦))) |
| 131 | 130 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑖 → ((𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ (𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦)))) |
| 132 | 131 | 2ralbidv 3209 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑖 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦)))) |
| 133 | 127, 132 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑖 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) ↔ (𝑖:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦))))) |
| 134 | 126, 133 | bibi12d 345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑖 → ((𝑓 ∈ 𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))) ↔ (𝑖 ∈ 𝐴 ↔ (𝑖:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦)))))) |
| 135 | 134, 16 | chvarvv 1989 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐴 ↔ (𝑖:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦)))) |
| 136 | 135 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ 𝐴 → (𝑖:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦)))) |
| 137 | 136 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑖:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑖‘𝑥) < (𝑖‘𝑦)))) |
| 138 | 137 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖:(1...𝐾)⟶(1...𝑁)) |
| 139 | 138 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → 𝑖:(1...𝐾)⟶(1...𝑁)) |
| 140 | 139 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → 𝑖:(1...𝐾)⟶(1...𝑁)) |
| 141 | 140 | frnd 6719 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → ran 𝑖 ⊆ (1...𝑁)) |
| 142 | 125, 141 | sselpwd 5303 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → ran 𝑖 ∈ 𝒫 (1...𝑁)) |
| 143 | 122, 124,
113, 142 | fvmptd 6998 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → (𝐹‘𝑖) = ran 𝑖) |
| 144 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) ∧ 𝑧 = 𝑗) → 𝑧 = 𝑗) |
| 145 | 144 | rneqd 5923 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) ∧ 𝑧 = 𝑗) → ran 𝑧 = ran 𝑗) |
| 146 | | fzfid 13996 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 147 | 146 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → (1...𝑁) ∈ Fin) |
| 148 | | eleq1w 2818 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑗 → (𝑓 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
| 149 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑗 → (𝑓:(1...𝐾)⟶(1...𝑁) ↔ 𝑗:(1...𝐾)⟶(1...𝑁))) |
| 150 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑗 → (𝑓‘𝑥) = (𝑗‘𝑥)) |
| 151 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑗 → (𝑓‘𝑦) = (𝑗‘𝑦)) |
| 152 | 150, 151 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑗 → ((𝑓‘𝑥) < (𝑓‘𝑦) ↔ (𝑗‘𝑥) < (𝑗‘𝑦))) |
| 153 | 152 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑗 → ((𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ (𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦)))) |
| 154 | 153 | 2ralbidv 3209 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑗 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦)))) |
| 155 | 149, 154 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑗 → ((𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) ↔ (𝑗:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦))))) |
| 156 | 148, 155 | bibi12d 345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑗 → ((𝑓 ∈ 𝐴 ↔ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))) ↔ (𝑗 ∈ 𝐴 ↔ (𝑗:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦)))))) |
| 157 | 156, 16 | chvarvv 1989 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ 𝐴 ↔ (𝑗:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦)))) |
| 158 | 157 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝐴 → (𝑗:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦)))) |
| 159 | 158 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑗:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑗‘𝑥) < (𝑗‘𝑦)))) |
| 160 | 159 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗:(1...𝐾)⟶(1...𝑁)) |
| 161 | 160 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → 𝑗:(1...𝐾)⟶(1...𝑁)) |
| 162 | 161 | frnd 6719 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → ran 𝑗 ⊆ (1...𝑁)) |
| 163 | 147, 162 | sselpwd 5303 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → ran 𝑗 ∈ 𝒫 (1...𝑁)) |
| 164 | 163 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → ran 𝑗 ∈ 𝒫 (1...𝑁)) |
| 165 | 122, 145,
114, 164 | fvmptd 6998 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → (𝐹‘𝑗) = ran 𝑗) |
| 166 | 121, 143,
165 | 3netr4d 3010 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) ∧ 𝑖 ≠ 𝑗) → (𝐹‘𝑖) ≠ (𝐹‘𝑗)) |
| 167 | 166 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → (𝑖 ≠ 𝑗 → (𝐹‘𝑖) ≠ (𝐹‘𝑗))) |
| 168 | 167 | necon4d 2957 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑖) = (𝐹‘𝑗) → 𝑖 = 𝑗)) |
| 169 | 168 | 3expa 1118 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑖) = (𝐹‘𝑗) → 𝑖 = 𝑗)) |
| 170 | 169 | ralrimiva 3133 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ∀𝑗 ∈ 𝐴 ((𝐹‘𝑖) = (𝐹‘𝑗) → 𝑖 = 𝑗)) |
| 171 | 170 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝐹‘𝑖) = (𝐹‘𝑗) → 𝑖 = 𝑗)) |
| 172 | 107, 171 | jca 511 |
. 2
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝐹‘𝑖) = (𝐹‘𝑗) → 𝑖 = 𝑗))) |
| 173 | | dff13 7252 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝐹‘𝑖) = (𝐹‘𝑗) → 𝑖 = 𝑗))) |
| 174 | 172, 173 | sylibr 234 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |