MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Structured version   Visualization version   GIF version

Theorem lgsdchr 26503
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a real Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchr ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchr
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6413 . . . . . 6 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
21a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V)
3 lgsdchr.x . . . . . 6 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
43a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))))
5 nnnn0 12240 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
65adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
7 lgsdchr.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
8 lgsdchr.b . . . . . . . . 9 𝐵 = (Base‘𝑍)
9 lgsdchr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
107, 8, 9znzrhfo 20755 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
116, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ–onto𝐵)
12 foelrn 6982 . . . . . . 7 ((𝐿:ℤ–onto𝐵𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
1311, 12sylan 580 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
14 lgsdchr.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
15 lgsdchr.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
1614, 7, 15, 8, 9, 3lgsdchrval 26502 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
17 simpr 485 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
18 nnz 12342 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1918ad2antrr 723 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
20 lgscl 26459 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2117, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2221zred 12426 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℝ)
2316, 22eqeltrd 2839 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) ∈ ℝ)
24 fveq2 6774 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑋𝑥) = (𝑋‘(𝐿𝑎)))
2524eleq1d 2823 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ∈ ℝ ↔ (𝑋‘(𝐿𝑎)) ∈ ℝ))
2623, 25syl5ibrcom 246 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2726rexlimdva 3213 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2827imp 407 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → (𝑋𝑥) ∈ ℝ)
2913, 28syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
302, 4, 29fmpt2d 6997 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℝ)
31 ax-resscn 10928 . . . 4 ℝ ⊆ ℂ
32 fss 6617 . . . 4 ((𝑋:𝐵⟶ℝ ∧ ℝ ⊆ ℂ) → 𝑋:𝐵⟶ℂ)
3330, 31, 32sylancl 586 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℂ)
34 eqid 2738 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
358, 34unitss 19902 . . . . 5 (Unit‘𝑍) ⊆ 𝐵
36 foelrn 6982 . . . . . . . . 9 ((𝐿:ℤ–onto𝐵𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3711, 36sylan 580 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3813, 37anim12dan 619 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
39 reeanv 3294 . . . . . . . . 9 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) ↔ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
4017adantrr 714 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
41 simprr 770 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
426adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℕ0)
43 lgsdirnn0 26492 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
4440, 41, 42, 43syl3anc 1370 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
457zncrng 20752 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
466, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ CRing)
47 crngring 19795 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ Ring)
4948adantr 481 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑍 ∈ Ring)
509zrhrhm 20713 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
5149, 50syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (ℤring RingHom 𝑍))
52 zringbas 20676 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
53 zringmulr 20679 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
54 eqid 2738 . . . . . . . . . . . . . . . 16 (.r𝑍) = (.r𝑍)
5552, 53, 54rhmmul 19971 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5651, 40, 41, 55syl3anc 1370 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5756fveq2d 6778 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
58 zmulcl 12369 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
5914, 7, 15, 8, 9, 3lgsdchrval 26502 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 · 𝑏) ∈ ℤ) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6058, 59sylan2 593 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6157, 60eqtr3d 2780 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6216adantrr 714 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
6314, 7, 15, 8, 9, 3lgsdchrval 26502 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑏 ∈ ℤ) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6463adantrl 713 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6562, 64oveq12d 7293 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
6644, 61, 653eqtr4d 2788 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
67 oveq12 7284 . . . . . . . . . . . . 13 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑥(.r𝑍)𝑦) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
6867fveq2d 6778 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
69 fveq2 6774 . . . . . . . . . . . . 13 (𝑦 = (𝐿𝑏) → (𝑋𝑦) = (𝑋‘(𝐿𝑏)))
7024, 69oveqan12d 7294 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
7168, 70eqeq12d 2754 . . . . . . . . . . 11 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏)))))
7266, 71syl5ibrcom 246 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7372rexlimdvva 3223 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7439, 73syl5bir 242 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7574imp 407 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7638, 75syldan 591 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776ralrimivva 3123 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
78 ss2ralv 3989 . . . . 5 ((Unit‘𝑍) ⊆ 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7935, 77, 78mpsyl 68 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
80 1z 12350 . . . . . 6 1 ∈ ℤ
8114, 7, 15, 8, 9, 3lgsdchrval 26502 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 1 ∈ ℤ) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
8280, 81mpan2 688 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
83 eqid 2738 . . . . . . . 8 (1r𝑍) = (1r𝑍)
849, 83zrh1 20714 . . . . . . 7 (𝑍 ∈ Ring → (𝐿‘1) = (1r𝑍))
8548, 84syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐿‘1) = (1r𝑍))
8685fveq2d 6778 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (𝑋‘(1r𝑍)))
8718adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
88 1lgs 26488 . . . . . 6 (𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
8987, 88syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (1 /L 𝑁) = 1)
9082, 86, 893eqtr3d 2786 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(1r𝑍)) = 1)
91 lgsne0 26483 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9217, 19, 91syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9392biimpd 228 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 → (𝑎 gcd 𝑁) = 1))
9416neeq1d 3003 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 ↔ (𝑎 /L 𝑁) ≠ 0))
957, 34, 9znunit 20771 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
966, 95sylan 580 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
9793, 94, 963imtr4d 294 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍)))
9824neeq1d 3003 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 ↔ (𝑋‘(𝐿𝑎)) ≠ 0))
99 eleq1 2826 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑥 ∈ (Unit‘𝑍) ↔ (𝐿𝑎) ∈ (Unit‘𝑍)))
10098, 99imbi12d 345 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → (((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)) ↔ ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍))))
10197, 100syl5ibrcom 246 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
102101rexlimdva 3213 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
103102imp 407 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10413, 103syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
105104ralrimiva 3103 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10679, 90, 1053jca 1127 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
107 simpl 483 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
10814, 7, 8, 34, 107, 15dchrelbas3 26386 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10933, 106, 108mpbir2and 710 . 2 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋𝐷)
110109, 30jca 512 1 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  cio 6389  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cn 11973  2c2 12028  0cn0 12233  cz 12319  cdvds 15963   gcd cgcd 16201  Basecbs 16912  .rcmulr 16963  1rcur 19737  Ringcrg 19783  CRingccrg 19784  Unitcui 19881   RingHom crh 19956  ringczring 20670  ℤRHomczrh 20701  ℤ/nczn 20704  DChrcdchr 26380   /L clgs 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-dchr 26381  df-lgs 26443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator