MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Structured version   Visualization version   GIF version

Theorem lgsdchr 25939
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a real Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchr ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchr
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6304 . . . . . 6 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
21a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V)
3 lgsdchr.x . . . . . 6 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
43a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))))
5 nnnn0 11892 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
65adantr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
7 lgsdchr.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
8 lgsdchr.b . . . . . . . . 9 𝐵 = (Base‘𝑍)
9 lgsdchr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
107, 8, 9znzrhfo 20239 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
116, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ–onto𝐵)
12 foelrn 6849 . . . . . . 7 ((𝐿:ℤ–onto𝐵𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
1311, 12sylan 583 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
14 lgsdchr.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
15 lgsdchr.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
1614, 7, 15, 8, 9, 3lgsdchrval 25938 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
17 simpr 488 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
18 nnz 11992 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1918ad2antrr 725 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
20 lgscl 25895 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2117, 19, 20syl2anc 587 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2221zred 12075 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℝ)
2316, 22eqeltrd 2890 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) ∈ ℝ)
24 fveq2 6645 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑋𝑥) = (𝑋‘(𝐿𝑎)))
2524eleq1d 2874 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ∈ ℝ ↔ (𝑋‘(𝐿𝑎)) ∈ ℝ))
2623, 25syl5ibrcom 250 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2726rexlimdva 3243 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2827imp 410 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → (𝑋𝑥) ∈ ℝ)
2913, 28syldan 594 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
302, 4, 29fmpt2d 6864 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℝ)
31 ax-resscn 10583 . . . 4 ℝ ⊆ ℂ
32 fss 6501 . . . 4 ((𝑋:𝐵⟶ℝ ∧ ℝ ⊆ ℂ) → 𝑋:𝐵⟶ℂ)
3330, 31, 32sylancl 589 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℂ)
34 eqid 2798 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
358, 34unitss 19406 . . . . 5 (Unit‘𝑍) ⊆ 𝐵
36 foelrn 6849 . . . . . . . . 9 ((𝐿:ℤ–onto𝐵𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3711, 36sylan 583 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3813, 37anim12dan 621 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
39 reeanv 3320 . . . . . . . . 9 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) ↔ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
4017adantrr 716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
41 simprr 772 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
426adantr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℕ0)
43 lgsdirnn0 25928 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
4440, 41, 42, 43syl3anc 1368 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
457zncrng 20236 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
466, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ CRing)
47 crngring 19302 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ Ring)
4948adantr 484 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑍 ∈ Ring)
509zrhrhm 20205 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
5149, 50syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (ℤring RingHom 𝑍))
52 zringbas 20169 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
53 zringmulr 20172 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
54 eqid 2798 . . . . . . . . . . . . . . . 16 (.r𝑍) = (.r𝑍)
5552, 53, 54rhmmul 19475 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5651, 40, 41, 55syl3anc 1368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5756fveq2d 6649 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
58 zmulcl 12019 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
5914, 7, 15, 8, 9, 3lgsdchrval 25938 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 · 𝑏) ∈ ℤ) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6058, 59sylan2 595 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6157, 60eqtr3d 2835 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6216adantrr 716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
6314, 7, 15, 8, 9, 3lgsdchrval 25938 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑏 ∈ ℤ) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6463adantrl 715 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6562, 64oveq12d 7153 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
6644, 61, 653eqtr4d 2843 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
67 oveq12 7144 . . . . . . . . . . . . 13 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑥(.r𝑍)𝑦) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
6867fveq2d 6649 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
69 fveq2 6645 . . . . . . . . . . . . 13 (𝑦 = (𝐿𝑏) → (𝑋𝑦) = (𝑋‘(𝐿𝑏)))
7024, 69oveqan12d 7154 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
7168, 70eqeq12d 2814 . . . . . . . . . . 11 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏)))))
7266, 71syl5ibrcom 250 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7372rexlimdvva 3253 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7439, 73syl5bir 246 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7574imp 410 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7638, 75syldan 594 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776ralrimivva 3156 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
78 ss2ralv 3983 . . . . 5 ((Unit‘𝑍) ⊆ 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7935, 77, 78mpsyl 68 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
80 1z 12000 . . . . . 6 1 ∈ ℤ
8114, 7, 15, 8, 9, 3lgsdchrval 25938 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 1 ∈ ℤ) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
8280, 81mpan2 690 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
83 eqid 2798 . . . . . . . 8 (1r𝑍) = (1r𝑍)
849, 83zrh1 20206 . . . . . . 7 (𝑍 ∈ Ring → (𝐿‘1) = (1r𝑍))
8548, 84syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐿‘1) = (1r𝑍))
8685fveq2d 6649 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (𝑋‘(1r𝑍)))
8718adantr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
88 1lgs 25924 . . . . . 6 (𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
8987, 88syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (1 /L 𝑁) = 1)
9082, 86, 893eqtr3d 2841 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(1r𝑍)) = 1)
91 lgsne0 25919 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9217, 19, 91syl2anc 587 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9392biimpd 232 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 → (𝑎 gcd 𝑁) = 1))
9416neeq1d 3046 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 ↔ (𝑎 /L 𝑁) ≠ 0))
957, 34, 9znunit 20255 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
966, 95sylan 583 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
9793, 94, 963imtr4d 297 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍)))
9824neeq1d 3046 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 ↔ (𝑋‘(𝐿𝑎)) ≠ 0))
99 eleq1 2877 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑥 ∈ (Unit‘𝑍) ↔ (𝐿𝑎) ∈ (Unit‘𝑍)))
10098, 99imbi12d 348 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → (((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)) ↔ ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍))))
10197, 100syl5ibrcom 250 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
102101rexlimdva 3243 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
103102imp 410 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10413, 103syldan 594 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
105104ralrimiva 3149 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10679, 90, 1053jca 1125 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
107 simpl 486 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
10814, 7, 8, 34, 107, 15dchrelbas3 25822 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10933, 106, 108mpbir2and 712 . 2 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋𝐷)
110109, 30jca 515 1 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110  cio 6281  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cn 11625  2c2 11680  0cn0 11885  cz 11969  cdvds 15599   gcd cgcd 15833  Basecbs 16475  .rcmulr 16558  1rcur 19244  Ringcrg 19290  CRingccrg 19291  Unitcui 19385   RingHom crh 19460  ringzring 20163  ℤRHomczrh 20193  ℤ/nczn 20196  DChrcdchr 25816   /L clgs 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-dchr 25817  df-lgs 25879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator