MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Structured version   Visualization version   GIF version

Theorem lgsdchr 27318
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a real Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchr ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchr
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6504 . . . . . 6 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
21a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V)
3 lgsdchr.x . . . . . 6 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
43a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))))
5 nnnn0 12508 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
65adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
7 lgsdchr.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
8 lgsdchr.b . . . . . . . . 9 𝐵 = (Base‘𝑍)
9 lgsdchr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
107, 8, 9znzrhfo 21508 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
116, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ–onto𝐵)
12 foelrn 7097 . . . . . . 7 ((𝐿:ℤ–onto𝐵𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
1311, 12sylan 580 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
14 lgsdchr.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
15 lgsdchr.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
1614, 7, 15, 8, 9, 3lgsdchrval 27317 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
17 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
18 nnz 12609 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1918ad2antrr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
20 lgscl 27274 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2117, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2221zred 12697 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℝ)
2316, 22eqeltrd 2834 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) ∈ ℝ)
24 fveq2 6876 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑋𝑥) = (𝑋‘(𝐿𝑎)))
2524eleq1d 2819 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ∈ ℝ ↔ (𝑋‘(𝐿𝑎)) ∈ ℝ))
2623, 25syl5ibrcom 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2726rexlimdva 3141 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2827imp 406 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → (𝑋𝑥) ∈ ℝ)
2913, 28syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
302, 4, 29fmpt2d 7114 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℝ)
31 ax-resscn 11186 . . . 4 ℝ ⊆ ℂ
32 fss 6722 . . . 4 ((𝑋:𝐵⟶ℝ ∧ ℝ ⊆ ℂ) → 𝑋:𝐵⟶ℂ)
3330, 31, 32sylancl 586 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℂ)
34 eqid 2735 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
358, 34unitss 20336 . . . . 5 (Unit‘𝑍) ⊆ 𝐵
36 foelrn 7097 . . . . . . . . 9 ((𝐿:ℤ–onto𝐵𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3711, 36sylan 580 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3813, 37anim12dan 619 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
39 reeanv 3213 . . . . . . . . 9 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) ↔ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
4017adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
41 simprr 772 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
426adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℕ0)
43 lgsdirnn0 27307 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
4440, 41, 42, 43syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
457zncrng 21505 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
466, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ CRing)
47 crngring 20205 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ Ring)
4948adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑍 ∈ Ring)
509zrhrhm 21472 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
5149, 50syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (ℤring RingHom 𝑍))
52 zringbas 21414 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
53 zringmulr 21418 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
54 eqid 2735 . . . . . . . . . . . . . . . 16 (.r𝑍) = (.r𝑍)
5552, 53, 54rhmmul 20446 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5651, 40, 41, 55syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5756fveq2d 6880 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
58 zmulcl 12641 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
5914, 7, 15, 8, 9, 3lgsdchrval 27317 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 · 𝑏) ∈ ℤ) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6058, 59sylan2 593 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6157, 60eqtr3d 2772 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6216adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
6314, 7, 15, 8, 9, 3lgsdchrval 27317 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑏 ∈ ℤ) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6463adantrl 716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6562, 64oveq12d 7423 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
6644, 61, 653eqtr4d 2780 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
67 oveq12 7414 . . . . . . . . . . . . 13 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑥(.r𝑍)𝑦) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
6867fveq2d 6880 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
69 fveq2 6876 . . . . . . . . . . . . 13 (𝑦 = (𝐿𝑏) → (𝑋𝑦) = (𝑋‘(𝐿𝑏)))
7024, 69oveqan12d 7424 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
7168, 70eqeq12d 2751 . . . . . . . . . . 11 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏)))))
7266, 71syl5ibrcom 247 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7372rexlimdvva 3198 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7439, 73biimtrrid 243 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7574imp 406 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7638, 75syldan 591 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776ralrimivva 3187 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
78 ss2ralv 4029 . . . . 5 ((Unit‘𝑍) ⊆ 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7935, 77, 78mpsyl 68 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
80 1z 12622 . . . . . 6 1 ∈ ℤ
8114, 7, 15, 8, 9, 3lgsdchrval 27317 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 1 ∈ ℤ) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
8280, 81mpan2 691 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
83 eqid 2735 . . . . . . . 8 (1r𝑍) = (1r𝑍)
849, 83zrh1 21473 . . . . . . 7 (𝑍 ∈ Ring → (𝐿‘1) = (1r𝑍))
8548, 84syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐿‘1) = (1r𝑍))
8685fveq2d 6880 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (𝑋‘(1r𝑍)))
8718adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
88 1lgs 27303 . . . . . 6 (𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
8987, 88syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (1 /L 𝑁) = 1)
9082, 86, 893eqtr3d 2778 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(1r𝑍)) = 1)
91 lgsne0 27298 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9217, 19, 91syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9392biimpd 229 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 → (𝑎 gcd 𝑁) = 1))
9416neeq1d 2991 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 ↔ (𝑎 /L 𝑁) ≠ 0))
957, 34, 9znunit 21524 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
966, 95sylan 580 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
9793, 94, 963imtr4d 294 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍)))
9824neeq1d 2991 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 ↔ (𝑋‘(𝐿𝑎)) ≠ 0))
99 eleq1 2822 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑥 ∈ (Unit‘𝑍) ↔ (𝐿𝑎) ∈ (Unit‘𝑍)))
10098, 99imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → (((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)) ↔ ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍))))
10197, 100syl5ibrcom 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
102101rexlimdva 3141 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
103102imp 406 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10413, 103syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
105104ralrimiva 3132 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10679, 90, 1053jca 1128 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
107 simpl 482 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
10814, 7, 8, 34, 107, 15dchrelbas3 27201 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10933, 106, 108mpbir2and 713 . 2 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋𝐷)
110109, 30jca 511 1 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  cio 6482  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  cn 12240  2c2 12295  0cn0 12501  cz 12588  cdvds 16272   gcd cgcd 16513  Basecbs 17228  .rcmulr 17272  1rcur 20141  Ringcrg 20193  CRingccrg 20194  Unitcui 20315   RingHom crh 20429  ringczring 21407  ℤRHomczrh 21460  ℤ/nczn 21463  DChrcdchr 27195   /L clgs 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-phi 16785  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-dchr 27196  df-lgs 27258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator