MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Structured version   Visualization version   GIF version

Theorem lgsdchr 26103
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a real Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchr ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchr
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6329 . . . . . 6 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
21a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V)
3 lgsdchr.x . . . . . 6 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
43a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))))
5 nnnn0 11995 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
65adantr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
7 lgsdchr.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
8 lgsdchr.b . . . . . . . . 9 𝐵 = (Base‘𝑍)
9 lgsdchr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
107, 8, 9znzrhfo 20378 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
116, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ–onto𝐵)
12 foelrn 6894 . . . . . . 7 ((𝐿:ℤ–onto𝐵𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
1311, 12sylan 583 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
14 lgsdchr.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
15 lgsdchr.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
1614, 7, 15, 8, 9, 3lgsdchrval 26102 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
17 simpr 488 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
18 nnz 12097 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1918ad2antrr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
20 lgscl 26059 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2117, 19, 20syl2anc 587 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2221zred 12180 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℝ)
2316, 22eqeltrd 2834 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) ∈ ℝ)
24 fveq2 6686 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑋𝑥) = (𝑋‘(𝐿𝑎)))
2524eleq1d 2818 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ∈ ℝ ↔ (𝑋‘(𝐿𝑎)) ∈ ℝ))
2623, 25syl5ibrcom 250 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2726rexlimdva 3195 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2827imp 410 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → (𝑋𝑥) ∈ ℝ)
2913, 28syldan 594 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
302, 4, 29fmpt2d 6909 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℝ)
31 ax-resscn 10684 . . . 4 ℝ ⊆ ℂ
32 fss 6531 . . . 4 ((𝑋:𝐵⟶ℝ ∧ ℝ ⊆ ℂ) → 𝑋:𝐵⟶ℂ)
3330, 31, 32sylancl 589 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℂ)
34 eqid 2739 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
358, 34unitss 19544 . . . . 5 (Unit‘𝑍) ⊆ 𝐵
36 foelrn 6894 . . . . . . . . 9 ((𝐿:ℤ–onto𝐵𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3711, 36sylan 583 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3813, 37anim12dan 622 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
39 reeanv 3271 . . . . . . . . 9 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) ↔ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
4017adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
41 simprr 773 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
426adantr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℕ0)
43 lgsdirnn0 26092 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
4440, 41, 42, 43syl3anc 1372 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
457zncrng 20375 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
466, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ CRing)
47 crngring 19440 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ Ring)
4948adantr 484 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑍 ∈ Ring)
509zrhrhm 20344 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
5149, 50syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (ℤring RingHom 𝑍))
52 zringbas 20307 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
53 zringmulr 20310 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
54 eqid 2739 . . . . . . . . . . . . . . . 16 (.r𝑍) = (.r𝑍)
5552, 53, 54rhmmul 19613 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5651, 40, 41, 55syl3anc 1372 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5756fveq2d 6690 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
58 zmulcl 12124 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
5914, 7, 15, 8, 9, 3lgsdchrval 26102 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 · 𝑏) ∈ ℤ) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6058, 59sylan2 596 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6157, 60eqtr3d 2776 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6216adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
6314, 7, 15, 8, 9, 3lgsdchrval 26102 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑏 ∈ ℤ) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6463adantrl 716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6562, 64oveq12d 7200 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
6644, 61, 653eqtr4d 2784 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
67 oveq12 7191 . . . . . . . . . . . . 13 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑥(.r𝑍)𝑦) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
6867fveq2d 6690 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
69 fveq2 6686 . . . . . . . . . . . . 13 (𝑦 = (𝐿𝑏) → (𝑋𝑦) = (𝑋‘(𝐿𝑏)))
7024, 69oveqan12d 7201 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
7168, 70eqeq12d 2755 . . . . . . . . . . 11 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏)))))
7266, 71syl5ibrcom 250 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7372rexlimdvva 3205 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7439, 73syl5bir 246 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7574imp 410 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7638, 75syldan 594 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776ralrimivva 3104 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
78 ss2ralv 3955 . . . . 5 ((Unit‘𝑍) ⊆ 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7935, 77, 78mpsyl 68 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
80 1z 12105 . . . . . 6 1 ∈ ℤ
8114, 7, 15, 8, 9, 3lgsdchrval 26102 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 1 ∈ ℤ) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
8280, 81mpan2 691 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
83 eqid 2739 . . . . . . . 8 (1r𝑍) = (1r𝑍)
849, 83zrh1 20345 . . . . . . 7 (𝑍 ∈ Ring → (𝐿‘1) = (1r𝑍))
8548, 84syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐿‘1) = (1r𝑍))
8685fveq2d 6690 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (𝑋‘(1r𝑍)))
8718adantr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
88 1lgs 26088 . . . . . 6 (𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
8987, 88syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (1 /L 𝑁) = 1)
9082, 86, 893eqtr3d 2782 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(1r𝑍)) = 1)
91 lgsne0 26083 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9217, 19, 91syl2anc 587 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9392biimpd 232 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 → (𝑎 gcd 𝑁) = 1))
9416neeq1d 2994 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 ↔ (𝑎 /L 𝑁) ≠ 0))
957, 34, 9znunit 20394 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
966, 95sylan 583 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
9793, 94, 963imtr4d 297 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍)))
9824neeq1d 2994 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 ↔ (𝑋‘(𝐿𝑎)) ≠ 0))
99 eleq1 2821 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑥 ∈ (Unit‘𝑍) ↔ (𝐿𝑎) ∈ (Unit‘𝑍)))
10098, 99imbi12d 348 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → (((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)) ↔ ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍))))
10197, 100syl5ibrcom 250 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
102101rexlimdva 3195 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
103102imp 410 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10413, 103syldan 594 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
105104ralrimiva 3097 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10679, 90, 1053jca 1129 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
107 simpl 486 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
10814, 7, 8, 34, 107, 15dchrelbas3 25986 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10933, 106, 108mpbir2and 713 . 2 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋𝐷)
110109, 30jca 515 1 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  Vcvv 3400  wss 3853   class class class wbr 5040  cmpt 5120  cio 6305  wf 6345  ontowfo 6347  cfv 6349  (class class class)co 7182  cc 10625  cr 10626  0cc0 10627  1c1 10628   · cmul 10632  cn 11728  2c2 11783  0cn0 11988  cz 12074  cdvds 15711   gcd cgcd 15949  Basecbs 16598  .rcmulr 16681  1rcur 19382  Ringcrg 19428  CRingccrg 19429  Unitcui 19523   RingHom crh 19598  ringzring 20301  ℤRHomczrh 20332  ℤ/nczn 20335  DChrcdchr 25980   /L clgs 26042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-tpos 7933  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-er 8332  df-ec 8334  df-qs 8338  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-sup 8991  df-inf 8992  df-dju 9415  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-xnn0 12061  df-z 12075  df-dec 12192  df-uz 12337  df-q 12443  df-rp 12485  df-fz 12994  df-fzo 13137  df-fl 13265  df-mod 13341  df-seq 13473  df-exp 13534  df-hash 13795  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-dvds 15712  df-gcd 15950  df-prm 16125  df-phi 16215  df-pc 16286  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-0g 16830  df-imas 16896  df-qus 16897  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-mhm 18084  df-grp 18234  df-minusg 18235  df-sbg 18236  df-mulg 18355  df-subg 18406  df-nsg 18407  df-eqg 18408  df-ghm 18486  df-cmn 19038  df-abl 19039  df-mgp 19371  df-ur 19383  df-ring 19430  df-cring 19431  df-oppr 19507  df-dvdsr 19525  df-unit 19526  df-rnghom 19601  df-subrg 19664  df-lmod 19767  df-lss 19835  df-lsp 19875  df-sra 20075  df-rgmod 20076  df-lidl 20077  df-rsp 20078  df-2idl 20136  df-cnfld 20230  df-zring 20302  df-zrh 20336  df-zn 20339  df-dchr 25981  df-lgs 26043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator