MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Structured version   Visualization version   GIF version

Theorem lgsdchr 27299
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a real Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchr ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchr
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6463 . . . . . 6 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
21a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V)
3 lgsdchr.x . . . . . 6 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
43a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))))
5 nnnn0 12394 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
65adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
7 lgsdchr.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
8 lgsdchr.b . . . . . . . . 9 𝐵 = (Base‘𝑍)
9 lgsdchr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
107, 8, 9znzrhfo 21490 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
116, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ–onto𝐵)
12 foelrn 7046 . . . . . . 7 ((𝐿:ℤ–onto𝐵𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
1311, 12sylan 580 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎))
14 lgsdchr.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
15 lgsdchr.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
1614, 7, 15, 8, 9, 3lgsdchrval 27298 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
17 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
18 nnz 12495 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1918ad2antrr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
20 lgscl 27255 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2117, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℤ)
2221zred 12583 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑎 /L 𝑁) ∈ ℝ)
2316, 22eqeltrd 2831 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑋‘(𝐿𝑎)) ∈ ℝ)
24 fveq2 6828 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑋𝑥) = (𝑋‘(𝐿𝑎)))
2524eleq1d 2816 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ∈ ℝ ↔ (𝑋‘(𝐿𝑎)) ∈ ℝ))
2623, 25syl5ibrcom 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2726rexlimdva 3133 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → (𝑋𝑥) ∈ ℝ))
2827imp 406 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → (𝑋𝑥) ∈ ℝ)
2913, 28syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
302, 4, 29fmpt2d 7063 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℝ)
31 ax-resscn 11069 . . . 4 ℝ ⊆ ℂ
32 fss 6673 . . . 4 ((𝑋:𝐵⟶ℝ ∧ ℝ ⊆ ℂ) → 𝑋:𝐵⟶ℂ)
3330, 31, 32sylancl 586 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋:𝐵⟶ℂ)
34 eqid 2731 . . . . . 6 (Unit‘𝑍) = (Unit‘𝑍)
358, 34unitss 20300 . . . . 5 (Unit‘𝑍) ⊆ 𝐵
36 foelrn 7046 . . . . . . . . 9 ((𝐿:ℤ–onto𝐵𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3711, 36sylan 580 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑦𝐵) → ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))
3813, 37anim12dan 619 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
39 reeanv 3204 . . . . . . . . 9 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) ↔ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)))
4017adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
41 simprr 772 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
426adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℕ0)
43 lgsdirnn0 27288 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
4440, 41, 42, 43syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑏) /L 𝑁) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
457zncrng 21487 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
466, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ CRing)
47 crngring 20169 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑍 ∈ Ring)
4948adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑍 ∈ Ring)
509zrhrhm 21454 . . . . . . . . . . . . . . . 16 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
5149, 50syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (ℤring RingHom 𝑍))
52 zringbas 21396 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
53 zringmulr 21400 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
54 eqid 2731 . . . . . . . . . . . . . . . 16 (.r𝑍) = (.r𝑍)
5552, 53, 54rhmmul 20409 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5651, 40, 41, 55syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐿‘(𝑎 · 𝑏)) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
5756fveq2d 6832 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
58 zmulcl 12527 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
5914, 7, 15, 8, 9, 3lgsdchrval 27298 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 · 𝑏) ∈ ℤ) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6058, 59sylan2 593 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑎 · 𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6157, 60eqtr3d 2768 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑎 · 𝑏) /L 𝑁))
6216adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑎)) = (𝑎 /L 𝑁))
6314, 7, 15, 8, 9, 3lgsdchrval 27298 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑏 ∈ ℤ) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6463adantrl 716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘(𝐿𝑏)) = (𝑏 /L 𝑁))
6562, 64oveq12d 7370 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))) = ((𝑎 /L 𝑁) · (𝑏 /L 𝑁)))
6644, 61, 653eqtr4d 2776 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
67 oveq12 7361 . . . . . . . . . . . . 13 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑥(.r𝑍)𝑦) = ((𝐿𝑎)(.r𝑍)(𝐿𝑏)))
6867fveq2d 6832 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))))
69 fveq2 6828 . . . . . . . . . . . . 13 (𝑦 = (𝐿𝑏) → (𝑋𝑦) = (𝑋‘(𝐿𝑏)))
7024, 69oveqan12d 7371 . . . . . . . . . . . 12 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏))))
7168, 70eqeq12d 2747 . . . . . . . . . . 11 ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ (𝑋‘((𝐿𝑎)(.r𝑍)(𝐿𝑏))) = ((𝑋‘(𝐿𝑎)) · (𝑋‘(𝐿𝑏)))))
7266, 71syl5ibrcom 247 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7372rexlimdvva 3189 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑥 = (𝐿𝑎) ∧ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7439, 73biimtrrid 243 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7574imp 406 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) ∧ ∃𝑏 ∈ ℤ 𝑦 = (𝐿𝑏))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7638, 75syldan 591 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776ralrimivva 3175 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
78 ss2ralv 4000 . . . . 5 ((Unit‘𝑍) ⊆ 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7935, 77, 78mpsyl 68 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
80 1z 12508 . . . . . 6 1 ∈ ℤ
8114, 7, 15, 8, 9, 3lgsdchrval 27298 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 1 ∈ ℤ) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
8280, 81mpan2 691 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (1 /L 𝑁))
83 eqid 2731 . . . . . . . 8 (1r𝑍) = (1r𝑍)
849, 83zrh1 21455 . . . . . . 7 (𝑍 ∈ Ring → (𝐿‘1) = (1r𝑍))
8548, 84syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐿‘1) = (1r𝑍))
8685fveq2d 6832 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(𝐿‘1)) = (𝑋‘(1r𝑍)))
8718adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
88 1lgs 27284 . . . . . 6 (𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
8987, 88syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (1 /L 𝑁) = 1)
9082, 86, 893eqtr3d 2774 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋‘(1r𝑍)) = 1)
91 lgsne0 27279 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9217, 19, 91syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 ↔ (𝑎 gcd 𝑁) = 1))
9392biimpd 229 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑎 /L 𝑁) ≠ 0 → (𝑎 gcd 𝑁) = 1))
9416neeq1d 2987 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 ↔ (𝑎 /L 𝑁) ≠ 0))
957, 34, 9znunit 21506 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
966, 95sylan 580 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝐿𝑎) ∈ (Unit‘𝑍) ↔ (𝑎 gcd 𝑁) = 1))
9793, 94, 963imtr4d 294 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍)))
9824neeq1d 2987 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 ↔ (𝑋‘(𝐿𝑎)) ≠ 0))
99 eleq1 2819 . . . . . . . . . 10 (𝑥 = (𝐿𝑎) → (𝑥 ∈ (Unit‘𝑍) ↔ (𝐿𝑎) ∈ (Unit‘𝑍)))
10098, 99imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐿𝑎) → (((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)) ↔ ((𝑋‘(𝐿𝑎)) ≠ 0 → (𝐿𝑎) ∈ (Unit‘𝑍))))
10197, 100syl5ibrcom 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑎 ∈ ℤ) → (𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
102101rexlimdva 3133 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
103102imp 406 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ ∃𝑎 ∈ ℤ 𝑥 = (𝐿𝑎)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10413, 103syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑥𝐵) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
105104ralrimiva 3124 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10679, 90, 1053jca 1128 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
107 simpl 482 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
10814, 7, 8, 34, 107, 15dchrelbas3 27182 . . 3 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)(𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10933, 106, 108mpbir2and 713 . 2 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑋𝐷)
110109, 30jca 511 1 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑋𝐷𝑋:𝐵⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897   class class class wbr 5093  cmpt 5174  cio 6441  wf 6483  ontowfo 6485  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013   · cmul 11017  cn 12131  2c2 12186  0cn0 12387  cz 12474  cdvds 16169   gcd cgcd 16411  Basecbs 17126  .rcmulr 17168  1rcur 20105  Ringcrg 20157  CRingccrg 20158  Unitcui 20279   RingHom crh 20393  ringczring 21389  ℤRHomczrh 21442  ℤ/nczn 21445  DChrcdchr 27176   /L clgs 27238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-inf 9333  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-xnn0 12461  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-dvds 16170  df-gcd 16412  df-prm 16589  df-phi 16683  df-pc 16755  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-0g 17351  df-imas 17418  df-qus 17419  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-nsg 19043  df-eqg 19044  df-ghm 19131  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-rhm 20396  df-subrng 20467  df-subrg 20491  df-lmod 20801  df-lss 20871  df-lsp 20911  df-sra 21113  df-rgmod 21114  df-lidl 21151  df-rsp 21152  df-2idl 21193  df-cnfld 21298  df-zring 21390  df-zrh 21446  df-zn 21449  df-dchr 27177  df-lgs 27239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator