MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Visualization version   GIF version

Theorem isercolllem1 15385
Description: Lemma for isercoll 15388. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝑆(𝑘)   𝑍(𝑘)

Proof of Theorem isercolllem1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
2 uzssz 12612 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3956 . . . . . . . . . 10 𝑍 ⊆ ℤ
4 zssre 12335 . . . . . . . . . 10 ℤ ⊆ ℝ
53, 4sstri 3931 . . . . . . . . 9 𝑍 ⊆ ℝ
6 isercoll.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶𝑍)
76ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝐺:ℕ⟶𝑍)
8 simplrl 774 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
97, 8ffvelrnd 6971 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ 𝑍)
105, 9sselid 3920 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ ℝ)
11 simplrr 775 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
1211nnred 11997 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
1310, 12resubcld 11412 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) ∈ ℝ)
148nnred 11997 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1510, 14resubcld 11412 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ∈ ℝ)
167, 11ffvelrnd 6971 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ 𝑍)
175, 16sselid 3920 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ ℝ)
1817, 12resubcld 11412 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑦) − 𝑦) ∈ ℝ)
19 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
2014, 12, 10, 19ltsub2dd 11597 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑥) − 𝑥))
218nnzd 12434 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℤ)
2211nnzd 12434 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
2314, 12, 19ltled 11132 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
24 eluz2 12597 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑥𝑦))
2521, 22, 23, 24syl3anbrc 1342 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (ℤ𝑥))
26 elfzuz 13261 . . . . . . . . . 10 (𝑘 ∈ (𝑥...𝑦) → 𝑘 ∈ (ℤ𝑥))
27 eluznn 12667 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
288, 27sylan 580 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
29 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
30 id 22 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝑛 = 𝑘)
3129, 30oveq12d 7302 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑘) − 𝑘))
32 eqid 2739 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))
33 ovex 7317 . . . . . . . . . . . . . 14 ((𝐺𝑘) − 𝑘) ∈ V
3431, 32, 33fvmpt 6884 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
3534adantl 482 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
367ffvelrnda 6970 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑍)
375, 36sselid 3920 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
38 nnre 11989 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3938adantl 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
4037, 39resubcld 11412 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ∈ ℝ)
4135, 40eqeltrd 2840 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4228, 41syldan 591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4326, 42sylan2 593 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...𝑦)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
44 elfzuz 13261 . . . . . . . . . 10 (𝑘 ∈ (𝑥...(𝑦 − 1)) → 𝑘 ∈ (ℤ𝑥))
45 peano2nn 11994 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
46 ffvelrn 6968 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶𝑍 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
477, 45, 46syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
485, 47sselid 3920 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℝ)
49 peano2rem 11297 . . . . . . . . . . . . . . 15 ((𝐺‘(𝑘 + 1)) ∈ ℝ → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
51 isercoll.i . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
5251ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
533, 36sselid 3920 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
543, 47sselid 3920 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℤ)
55 zltlem1 12382 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ ℤ ∧ (𝐺‘(𝑘 + 1)) ∈ ℤ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5653, 54, 55syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5752, 56mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1))
5837, 50, 39, 57lesub1dd 11600 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ (((𝐺‘(𝑘 + 1)) − 1) − 𝑘))
5948recnd 11012 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℂ)
60 1cnd 10979 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
6139recnd 11012 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
6259, 60, 61sub32d 11373 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = (((𝐺‘(𝑘 + 1)) − 𝑘) − 1))
6359, 61, 60subsub4d 11372 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 𝑘) − 1) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6462, 63eqtrd 2779 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6558, 64breqtrd 5101 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6645adantl 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
67 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐺𝑛) = (𝐺‘(𝑘 + 1)))
68 id 22 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
6967, 68oveq12d 7302 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐺𝑛) − 𝑛) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
70 ovex 7317 . . . . . . . . . . . . . 14 ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)) ∈ V
7169, 32, 70fvmpt 6884 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7266, 71syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7365, 35, 723brtr4d 5107 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7428, 73syldan 591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7544, 74sylan2 593 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...(𝑦 − 1))) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7625, 43, 75monoord 13762 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦))
77 fveq2 6783 . . . . . . . . . . 11 (𝑛 = 𝑥 → (𝐺𝑛) = (𝐺𝑥))
78 id 22 . . . . . . . . . . 11 (𝑛 = 𝑥𝑛 = 𝑥)
7977, 78oveq12d 7302 . . . . . . . . . 10 (𝑛 = 𝑥 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑥) − 𝑥))
80 ovex 7317 . . . . . . . . . 10 ((𝐺𝑥) − 𝑥) ∈ V
8179, 32, 80fvmpt 6884 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
828, 81syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
83 fveq2 6783 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝐺𝑛) = (𝐺𝑦))
84 id 22 . . . . . . . . . . 11 (𝑛 = 𝑦𝑛 = 𝑦)
8583, 84oveq12d 7302 . . . . . . . . . 10 (𝑛 = 𝑦 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑦) − 𝑦))
86 ovex 7317 . . . . . . . . . 10 ((𝐺𝑦) − 𝑦) ∈ V
8785, 32, 86fvmpt 6884 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8811, 87syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8976, 82, 883brtr3d 5106 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ≤ ((𝐺𝑦) − 𝑦))
9013, 15, 18, 20, 89ltletrd 11144 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦))
9110, 17, 12ltsub1d 11593 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) < (𝐺𝑦) ↔ ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦)))
9290, 91mpbird 256 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) < (𝐺𝑦))
9392ex 413 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
9493ralrimivva 3124 . . 3 (𝜑 → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
95 ss2ralv 3990 . . 3 (𝑆 ⊆ ℕ → (∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
9694, 95mpan9 507 . 2 ((𝜑𝑆 ⊆ ℕ) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
97 nnssre 11986 . . . . 5 ℕ ⊆ ℝ
98 ltso 11064 . . . . 5 < Or ℝ
99 soss 5524 . . . . 5 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
10097, 98, 99mp2 9 . . . 4 < Or ℕ
101100a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or ℕ)
102 soss 5524 . . . . 5 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
1035, 98, 102mp2 9 . . . 4 < Or 𝑍
104103a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or 𝑍)
1056adantr 481 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝐺:ℕ⟶𝑍)
106 simpr 485 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝑆 ⊆ ℕ)
107 soisores 7207 . . 3 ((( < Or ℕ ∧ < Or 𝑍) ∧ (𝐺:ℕ⟶𝑍𝑆 ⊆ ℕ)) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
108101, 104, 105, 106, 107syl22anc 836 . 2 ((𝜑𝑆 ⊆ ℕ) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
10996, 108mpbird 256 1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wral 3065  wss 3888   class class class wbr 5075  cmpt 5158   Or wor 5503  cres 5592  cima 5593  wf 6433  cfv 6437   Isom wiso 6438  (class class class)co 7284  cr 10879  1c1 10881   + caddc 10883   < clt 11018  cle 11019  cmin 11214  cn 11982  cz 12328  cuz 12591  ...cfz 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249
This theorem is referenced by:  isercolllem2  15386  isercolllem3  15387  isercoll  15388
  Copyright terms: Public domain W3C validator