MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Visualization version   GIF version

Theorem isercolllem1 15012
Description: Lemma for isercoll 15015. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝑆(𝑘)   𝑍(𝑘)

Proof of Theorem isercolllem1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
2 uzssz 12252 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3976 . . . . . . . . . 10 𝑍 ⊆ ℤ
4 zssre 11976 . . . . . . . . . 10 ℤ ⊆ ℝ
53, 4sstri 3951 . . . . . . . . 9 𝑍 ⊆ ℝ
6 isercoll.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶𝑍)
76ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝐺:ℕ⟶𝑍)
8 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
97, 8ffvelrnd 6834 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ 𝑍)
105, 9sseldi 3940 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ ℝ)
11 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
1211nnred 11640 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
1310, 12resubcld 11057 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) ∈ ℝ)
148nnred 11640 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1510, 14resubcld 11057 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ∈ ℝ)
167, 11ffvelrnd 6834 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ 𝑍)
175, 16sseldi 3940 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ ℝ)
1817, 12resubcld 11057 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑦) − 𝑦) ∈ ℝ)
19 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
2014, 12, 10, 19ltsub2dd 11242 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑥) − 𝑥))
218nnzd 12074 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℤ)
2211nnzd 12074 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
2314, 12, 19ltled 10777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
24 eluz2 12237 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑥𝑦))
2521, 22, 23, 24syl3anbrc 1340 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (ℤ𝑥))
26 elfzuz 12898 . . . . . . . . . 10 (𝑘 ∈ (𝑥...𝑦) → 𝑘 ∈ (ℤ𝑥))
27 eluznn 12306 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
288, 27sylan 583 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
29 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
30 id 22 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝑛 = 𝑘)
3129, 30oveq12d 7158 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑘) − 𝑘))
32 eqid 2822 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))
33 ovex 7173 . . . . . . . . . . . . . 14 ((𝐺𝑘) − 𝑘) ∈ V
3431, 32, 33fvmpt 6750 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
3534adantl 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
367ffvelrnda 6833 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑍)
375, 36sseldi 3940 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
38 nnre 11632 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3938adantl 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
4037, 39resubcld 11057 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ∈ ℝ)
4135, 40eqeltrd 2914 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4228, 41syldan 594 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4326, 42sylan2 595 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...𝑦)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
44 elfzuz 12898 . . . . . . . . . 10 (𝑘 ∈ (𝑥...(𝑦 − 1)) → 𝑘 ∈ (ℤ𝑥))
45 peano2nn 11637 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
46 ffvelrn 6831 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶𝑍 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
477, 45, 46syl2an 598 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
485, 47sseldi 3940 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℝ)
49 peano2rem 10942 . . . . . . . . . . . . . . 15 ((𝐺‘(𝑘 + 1)) ∈ ℝ → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
51 isercoll.i . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
5251ad4ant14 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
533, 36sseldi 3940 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
543, 47sseldi 3940 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℤ)
55 zltlem1 12023 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ ℤ ∧ (𝐺‘(𝑘 + 1)) ∈ ℤ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5653, 54, 55syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5752, 56mpbid 235 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1))
5837, 50, 39, 57lesub1dd 11245 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ (((𝐺‘(𝑘 + 1)) − 1) − 𝑘))
5948recnd 10658 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℂ)
60 1cnd 10625 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
6139recnd 10658 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
6259, 60, 61sub32d 11018 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = (((𝐺‘(𝑘 + 1)) − 𝑘) − 1))
6359, 61, 60subsub4d 11017 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 𝑘) − 1) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6462, 63eqtrd 2857 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6558, 64breqtrd 5068 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6645adantl 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
67 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐺𝑛) = (𝐺‘(𝑘 + 1)))
68 id 22 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
6967, 68oveq12d 7158 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐺𝑛) − 𝑛) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
70 ovex 7173 . . . . . . . . . . . . . 14 ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)) ∈ V
7169, 32, 70fvmpt 6750 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7266, 71syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7365, 35, 723brtr4d 5074 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7428, 73syldan 594 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7544, 74sylan2 595 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...(𝑦 − 1))) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7625, 43, 75monoord 13396 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦))
77 fveq2 6652 . . . . . . . . . . 11 (𝑛 = 𝑥 → (𝐺𝑛) = (𝐺𝑥))
78 id 22 . . . . . . . . . . 11 (𝑛 = 𝑥𝑛 = 𝑥)
7977, 78oveq12d 7158 . . . . . . . . . 10 (𝑛 = 𝑥 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑥) − 𝑥))
80 ovex 7173 . . . . . . . . . 10 ((𝐺𝑥) − 𝑥) ∈ V
8179, 32, 80fvmpt 6750 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
828, 81syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
83 fveq2 6652 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝐺𝑛) = (𝐺𝑦))
84 id 22 . . . . . . . . . . 11 (𝑛 = 𝑦𝑛 = 𝑦)
8583, 84oveq12d 7158 . . . . . . . . . 10 (𝑛 = 𝑦 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑦) − 𝑦))
86 ovex 7173 . . . . . . . . . 10 ((𝐺𝑦) − 𝑦) ∈ V
8785, 32, 86fvmpt 6750 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8811, 87syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8976, 82, 883brtr3d 5073 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ≤ ((𝐺𝑦) − 𝑦))
9013, 15, 18, 20, 89ltletrd 10789 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦))
9110, 17, 12ltsub1d 11238 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) < (𝐺𝑦) ↔ ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦)))
9290, 91mpbird 260 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) < (𝐺𝑦))
9392ex 416 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
9493ralrimivva 3181 . . 3 (𝜑 → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
95 ss2ralv 4010 . . 3 (𝑆 ⊆ ℕ → (∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
9694, 95mpan9 510 . 2 ((𝜑𝑆 ⊆ ℕ) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
97 nnssre 11629 . . . . 5 ℕ ⊆ ℝ
98 ltso 10710 . . . . 5 < Or ℝ
99 soss 5470 . . . . 5 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
10097, 98, 99mp2 9 . . . 4 < Or ℕ
101100a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or ℕ)
102 soss 5470 . . . . 5 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
1035, 98, 102mp2 9 . . . 4 < Or 𝑍
104103a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or 𝑍)
1056adantr 484 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝐺:ℕ⟶𝑍)
106 simpr 488 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝑆 ⊆ ℕ)
107 soisores 7064 . . 3 ((( < Or ℕ ∧ < Or 𝑍) ∧ (𝐺:ℕ⟶𝑍𝑆 ⊆ ℕ)) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
108101, 104, 105, 106, 107syl22anc 837 . 2 ((𝜑𝑆 ⊆ ℕ) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
10996, 108mpbird 260 1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wral 3130  wss 3908   class class class wbr 5042  cmpt 5122   Or wor 5450  cres 5534  cima 5535  wf 6330  cfv 6334   Isom wiso 6335  (class class class)co 7140  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  cz 11969  cuz 12231  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  isercolllem2  15013  isercolllem3  15014  isercoll  15015
  Copyright terms: Public domain W3C validator