MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Visualization version   GIF version

Theorem isercolllem1 15009
Description: Lemma for isercoll 15012. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝑆(𝑘)   𝑍(𝑘)

Proof of Theorem isercolllem1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
2 uzssz 12252 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3998 . . . . . . . . . 10 𝑍 ⊆ ℤ
4 zssre 11976 . . . . . . . . . 10 ℤ ⊆ ℝ
53, 4sstri 3973 . . . . . . . . 9 𝑍 ⊆ ℝ
6 isercoll.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶𝑍)
76ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝐺:ℕ⟶𝑍)
8 simplrl 773 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
97, 8ffvelrnd 6844 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ 𝑍)
105, 9sseldi 3962 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ ℝ)
11 simplrr 774 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
1211nnred 11641 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
1310, 12resubcld 11056 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) ∈ ℝ)
148nnred 11641 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1510, 14resubcld 11056 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ∈ ℝ)
167, 11ffvelrnd 6844 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ 𝑍)
175, 16sseldi 3962 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ ℝ)
1817, 12resubcld 11056 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑦) − 𝑦) ∈ ℝ)
19 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
2014, 12, 10, 19ltsub2dd 11241 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑥) − 𝑥))
218nnzd 12074 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℤ)
2211nnzd 12074 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
2314, 12, 19ltled 10776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
24 eluz2 12237 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑥𝑦))
2521, 22, 23, 24syl3anbrc 1335 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (ℤ𝑥))
26 elfzuz 12892 . . . . . . . . . 10 (𝑘 ∈ (𝑥...𝑦) → 𝑘 ∈ (ℤ𝑥))
27 eluznn 12306 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
288, 27sylan 580 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
29 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
30 id 22 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝑛 = 𝑘)
3129, 30oveq12d 7163 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑘) − 𝑘))
32 eqid 2818 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))
33 ovex 7178 . . . . . . . . . . . . . 14 ((𝐺𝑘) − 𝑘) ∈ V
3431, 32, 33fvmpt 6761 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
3534adantl 482 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
367ffvelrnda 6843 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑍)
375, 36sseldi 3962 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
38 nnre 11633 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3938adantl 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
4037, 39resubcld 11056 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ∈ ℝ)
4135, 40eqeltrd 2910 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4228, 41syldan 591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4326, 42sylan2 592 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...𝑦)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
44 elfzuz 12892 . . . . . . . . . 10 (𝑘 ∈ (𝑥...(𝑦 − 1)) → 𝑘 ∈ (ℤ𝑥))
45 peano2nn 11638 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
46 ffvelrn 6841 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶𝑍 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
477, 45, 46syl2an 595 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
485, 47sseldi 3962 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℝ)
49 peano2rem 10941 . . . . . . . . . . . . . . 15 ((𝐺‘(𝑘 + 1)) ∈ ℝ → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
51 isercoll.i . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
5251ad4ant14 748 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
533, 36sseldi 3962 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
543, 47sseldi 3962 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℤ)
55 zltlem1 12023 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ ℤ ∧ (𝐺‘(𝑘 + 1)) ∈ ℤ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5653, 54, 55syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5752, 56mpbid 233 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1))
5837, 50, 39, 57lesub1dd 11244 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ (((𝐺‘(𝑘 + 1)) − 1) − 𝑘))
5948recnd 10657 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℂ)
60 1cnd 10624 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
6139recnd 10657 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
6259, 60, 61sub32d 11017 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = (((𝐺‘(𝑘 + 1)) − 𝑘) − 1))
6359, 61, 60subsub4d 11016 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 𝑘) − 1) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6462, 63eqtrd 2853 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6558, 64breqtrd 5083 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6645adantl 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
67 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐺𝑛) = (𝐺‘(𝑘 + 1)))
68 id 22 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
6967, 68oveq12d 7163 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐺𝑛) − 𝑛) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
70 ovex 7178 . . . . . . . . . . . . . 14 ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)) ∈ V
7169, 32, 70fvmpt 6761 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7266, 71syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7365, 35, 723brtr4d 5089 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7428, 73syldan 591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7544, 74sylan2 592 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...(𝑦 − 1))) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7625, 43, 75monoord 13388 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦))
77 fveq2 6663 . . . . . . . . . . 11 (𝑛 = 𝑥 → (𝐺𝑛) = (𝐺𝑥))
78 id 22 . . . . . . . . . . 11 (𝑛 = 𝑥𝑛 = 𝑥)
7977, 78oveq12d 7163 . . . . . . . . . 10 (𝑛 = 𝑥 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑥) − 𝑥))
80 ovex 7178 . . . . . . . . . 10 ((𝐺𝑥) − 𝑥) ∈ V
8179, 32, 80fvmpt 6761 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
828, 81syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
83 fveq2 6663 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝐺𝑛) = (𝐺𝑦))
84 id 22 . . . . . . . . . . 11 (𝑛 = 𝑦𝑛 = 𝑦)
8583, 84oveq12d 7163 . . . . . . . . . 10 (𝑛 = 𝑦 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑦) − 𝑦))
86 ovex 7178 . . . . . . . . . 10 ((𝐺𝑦) − 𝑦) ∈ V
8785, 32, 86fvmpt 6761 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8811, 87syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8976, 82, 883brtr3d 5088 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ≤ ((𝐺𝑦) − 𝑦))
9013, 15, 18, 20, 89ltletrd 10788 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦))
9110, 17, 12ltsub1d 11237 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) < (𝐺𝑦) ↔ ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦)))
9290, 91mpbird 258 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) < (𝐺𝑦))
9392ex 413 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
9493ralrimivva 3188 . . 3 (𝜑 → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
95 ss2ralv 4032 . . 3 (𝑆 ⊆ ℕ → (∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
9694, 95mpan9 507 . 2 ((𝜑𝑆 ⊆ ℕ) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
97 nnssre 11630 . . . . 5 ℕ ⊆ ℝ
98 ltso 10709 . . . . 5 < Or ℝ
99 soss 5486 . . . . 5 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
10097, 98, 99mp2 9 . . . 4 < Or ℕ
101100a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or ℕ)
102 soss 5486 . . . . 5 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
1035, 98, 102mp2 9 . . . 4 < Or 𝑍
104103a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or 𝑍)
1056adantr 481 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝐺:ℕ⟶𝑍)
106 simpr 485 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝑆 ⊆ ℕ)
107 soisores 7069 . . 3 ((( < Or ℕ ∧ < Or 𝑍) ∧ (𝐺:ℕ⟶𝑍𝑆 ⊆ ℕ)) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
108101, 104, 105, 106, 107syl22anc 834 . 2 ((𝜑𝑆 ⊆ ℕ) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
10996, 108mpbird 258 1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wss 3933   class class class wbr 5057  cmpt 5137   Or wor 5466  cres 5550  cima 5551  wf 6344  cfv 6348   Isom wiso 6349  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cmin 10858  cn 11626  cz 11969  cuz 12231  ...cfz 12880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881
This theorem is referenced by:  isercolllem2  15010  isercolllem3  15011  isercoll  15012
  Copyright terms: Public domain W3C validator