MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Visualization version   GIF version

Theorem isercolllem1 15607
Description: Lemma for isercoll 15610. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝑆(𝑘)   𝑍(𝑘)

Proof of Theorem isercolllem1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
2 uzssz 12790 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3990 . . . . . . . . . 10 𝑍 ⊆ ℤ
4 zssre 12512 . . . . . . . . . 10 ℤ ⊆ ℝ
53, 4sstri 3953 . . . . . . . . 9 𝑍 ⊆ ℝ
6 isercoll.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶𝑍)
76ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝐺:ℕ⟶𝑍)
8 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
97, 8ffvelcdmd 7039 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ 𝑍)
105, 9sselid 3941 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ ℝ)
11 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
1211nnred 12177 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
1310, 12resubcld 11582 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) ∈ ℝ)
148nnred 12177 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1510, 14resubcld 11582 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ∈ ℝ)
167, 11ffvelcdmd 7039 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ 𝑍)
175, 16sselid 3941 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ ℝ)
1817, 12resubcld 11582 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑦) − 𝑦) ∈ ℝ)
19 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
2014, 12, 10, 19ltsub2dd 11767 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑥) − 𝑥))
218nnzd 12532 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℤ)
2211nnzd 12532 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
2314, 12, 19ltled 11298 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
24 eluz2 12775 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑥𝑦))
2521, 22, 23, 24syl3anbrc 1344 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (ℤ𝑥))
26 elfzuz 13457 . . . . . . . . . 10 (𝑘 ∈ (𝑥...𝑦) → 𝑘 ∈ (ℤ𝑥))
27 eluznn 12853 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
288, 27sylan 580 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
29 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
30 id 22 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝑛 = 𝑘)
3129, 30oveq12d 7387 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑘) − 𝑘))
32 eqid 2729 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))
33 ovex 7402 . . . . . . . . . . . . . 14 ((𝐺𝑘) − 𝑘) ∈ V
3431, 32, 33fvmpt 6950 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
3534adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
367ffvelcdmda 7038 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑍)
375, 36sselid 3941 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
38 nnre 12169 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
4037, 39resubcld 11582 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ∈ ℝ)
4135, 40eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4228, 41syldan 591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4326, 42sylan2 593 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...𝑦)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
44 elfzuz 13457 . . . . . . . . . 10 (𝑘 ∈ (𝑥...(𝑦 − 1)) → 𝑘 ∈ (ℤ𝑥))
45 peano2nn 12174 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
46 ffvelcdm 7035 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶𝑍 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
477, 45, 46syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
485, 47sselid 3941 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℝ)
49 peano2rem 11465 . . . . . . . . . . . . . . 15 ((𝐺‘(𝑘 + 1)) ∈ ℝ → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
51 isercoll.i . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
5251ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
533, 36sselid 3941 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
543, 47sselid 3941 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℤ)
55 zltlem1 12562 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ ℤ ∧ (𝐺‘(𝑘 + 1)) ∈ ℤ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5653, 54, 55syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5752, 56mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1))
5837, 50, 39, 57lesub1dd 11770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ (((𝐺‘(𝑘 + 1)) − 1) − 𝑘))
5948recnd 11178 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℂ)
60 1cnd 11145 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
6139recnd 11178 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
6259, 60, 61sub32d 11541 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = (((𝐺‘(𝑘 + 1)) − 𝑘) − 1))
6359, 61, 60subsub4d 11540 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 𝑘) − 1) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6462, 63eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6558, 64breqtrd 5128 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6645adantl 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
67 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐺𝑛) = (𝐺‘(𝑘 + 1)))
68 id 22 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
6967, 68oveq12d 7387 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐺𝑛) − 𝑛) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
70 ovex 7402 . . . . . . . . . . . . . 14 ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)) ∈ V
7169, 32, 70fvmpt 6950 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7266, 71syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7365, 35, 723brtr4d 5134 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7428, 73syldan 591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7544, 74sylan2 593 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...(𝑦 − 1))) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7625, 43, 75monoord 13973 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦))
77 fveq2 6840 . . . . . . . . . . 11 (𝑛 = 𝑥 → (𝐺𝑛) = (𝐺𝑥))
78 id 22 . . . . . . . . . . 11 (𝑛 = 𝑥𝑛 = 𝑥)
7977, 78oveq12d 7387 . . . . . . . . . 10 (𝑛 = 𝑥 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑥) − 𝑥))
80 ovex 7402 . . . . . . . . . 10 ((𝐺𝑥) − 𝑥) ∈ V
8179, 32, 80fvmpt 6950 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
828, 81syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
83 fveq2 6840 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝐺𝑛) = (𝐺𝑦))
84 id 22 . . . . . . . . . . 11 (𝑛 = 𝑦𝑛 = 𝑦)
8583, 84oveq12d 7387 . . . . . . . . . 10 (𝑛 = 𝑦 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑦) − 𝑦))
86 ovex 7402 . . . . . . . . . 10 ((𝐺𝑦) − 𝑦) ∈ V
8785, 32, 86fvmpt 6950 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8811, 87syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8976, 82, 883brtr3d 5133 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ≤ ((𝐺𝑦) − 𝑦))
9013, 15, 18, 20, 89ltletrd 11310 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦))
9110, 17, 12ltsub1d 11763 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) < (𝐺𝑦) ↔ ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦)))
9290, 91mpbird 257 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) < (𝐺𝑦))
9392ex 412 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
9493ralrimivva 3178 . . 3 (𝜑 → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
95 ss2ralv 4014 . . 3 (𝑆 ⊆ ℕ → (∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
9694, 95mpan9 506 . 2 ((𝜑𝑆 ⊆ ℕ) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
97 nnssre 12166 . . . . 5 ℕ ⊆ ℝ
98 ltso 11230 . . . . 5 < Or ℝ
99 soss 5559 . . . . 5 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
10097, 98, 99mp2 9 . . . 4 < Or ℕ
101100a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or ℕ)
102 soss 5559 . . . . 5 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
1035, 98, 102mp2 9 . . . 4 < Or 𝑍
104103a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or 𝑍)
1056adantr 480 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝐺:ℕ⟶𝑍)
106 simpr 484 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝑆 ⊆ ℕ)
107 soisores 7284 . . 3 ((( < Or ℕ ∧ < Or 𝑍) ∧ (𝐺:ℕ⟶𝑍𝑆 ⊆ ℕ)) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
108101, 104, 105, 106, 107syl22anc 838 . 2 ((𝜑𝑆 ⊆ ℕ) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
10996, 108mpbird 257 1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911   class class class wbr 5102  cmpt 5183   Or wor 5538  cres 5633  cima 5634  wf 6495  cfv 6499   Isom wiso 6500  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  isercolllem2  15608  isercolllem3  15609  isercoll  15610
  Copyright terms: Public domain W3C validator