MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Visualization version   GIF version

Theorem isercolllem1 15304
Description: Lemma for isercoll 15307. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝑆(𝑘)   𝑍(𝑘)

Proof of Theorem isercolllem1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
2 uzssz 12532 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3951 . . . . . . . . . 10 𝑍 ⊆ ℤ
4 zssre 12256 . . . . . . . . . 10 ℤ ⊆ ℝ
53, 4sstri 3926 . . . . . . . . 9 𝑍 ⊆ ℝ
6 isercoll.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶𝑍)
76ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝐺:ℕ⟶𝑍)
8 simplrl 773 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
97, 8ffvelrnd 6944 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ 𝑍)
105, 9sselid 3915 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) ∈ ℝ)
11 simplrr 774 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
1211nnred 11918 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
1310, 12resubcld 11333 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) ∈ ℝ)
148nnred 11918 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1510, 14resubcld 11333 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ∈ ℝ)
167, 11ffvelrnd 6944 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ 𝑍)
175, 16sselid 3915 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑦) ∈ ℝ)
1817, 12resubcld 11333 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑦) − 𝑦) ∈ ℝ)
19 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
2014, 12, 10, 19ltsub2dd 11518 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑥) − 𝑥))
218nnzd 12354 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℤ)
2211nnzd 12354 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
2314, 12, 19ltled 11053 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
24 eluz2 12517 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑥𝑦))
2521, 22, 23, 24syl3anbrc 1341 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (ℤ𝑥))
26 elfzuz 13181 . . . . . . . . . 10 (𝑘 ∈ (𝑥...𝑦) → 𝑘 ∈ (ℤ𝑥))
27 eluznn 12587 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
288, 27sylan 579 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → 𝑘 ∈ ℕ)
29 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
30 id 22 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝑛 = 𝑘)
3129, 30oveq12d 7273 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑘) − 𝑘))
32 eqid 2738 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))
33 ovex 7288 . . . . . . . . . . . . . 14 ((𝐺𝑘) − 𝑘) ∈ V
3431, 32, 33fvmpt 6857 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
3534adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) = ((𝐺𝑘) − 𝑘))
367ffvelrnda 6943 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑍)
375, 36sselid 3915 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
38 nnre 11910 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
4037, 39resubcld 11333 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ∈ ℝ)
4135, 40eqeltrd 2839 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4228, 41syldan 590 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
4326, 42sylan2 592 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...𝑦)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ∈ ℝ)
44 elfzuz 13181 . . . . . . . . . 10 (𝑘 ∈ (𝑥...(𝑦 − 1)) → 𝑘 ∈ (ℤ𝑥))
45 peano2nn 11915 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
46 ffvelrn 6941 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶𝑍 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
477, 45, 46syl2an 595 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑍)
485, 47sselid 3915 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℝ)
49 peano2rem 11218 . . . . . . . . . . . . . . 15 ((𝐺‘(𝑘 + 1)) ∈ ℝ → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1)) − 1) ∈ ℝ)
51 isercoll.i . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
5251ad4ant14 748 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
533, 36sselid 3915 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
543, 47sselid 3915 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℤ)
55 zltlem1 12303 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ ℤ ∧ (𝐺‘(𝑘 + 1)) ∈ ℤ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5653, 54, 55syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1)))
5752, 56mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝐺‘(𝑘 + 1)) − 1))
5837, 50, 39, 57lesub1dd 11521 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ (((𝐺‘(𝑘 + 1)) − 1) − 𝑘))
5948recnd 10934 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ ℂ)
60 1cnd 10901 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
6139recnd 10934 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
6259, 60, 61sub32d 11294 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = (((𝐺‘(𝑘 + 1)) − 𝑘) − 1))
6359, 61, 60subsub4d 11293 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 𝑘) − 1) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6462, 63eqtrd 2778 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1)) − 1) − 𝑘) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6558, 64breqtrd 5096 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) − 𝑘) ≤ ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
6645adantl 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
67 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐺𝑛) = (𝐺‘(𝑘 + 1)))
68 id 22 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
6967, 68oveq12d 7273 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐺𝑛) − 𝑛) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
70 ovex 7288 . . . . . . . . . . . . . 14 ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)) ∈ V
7169, 32, 70fvmpt 6857 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7266, 71syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)) = ((𝐺‘(𝑘 + 1)) − (𝑘 + 1)))
7365, 35, 723brtr4d 5102 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7428, 73syldan 590 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (ℤ𝑥)) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7544, 74sylan2 592 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) ∧ 𝑘 ∈ (𝑥...(𝑦 − 1))) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘(𝑘 + 1)))
7625, 43, 75monoord 13681 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) ≤ ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦))
77 fveq2 6756 . . . . . . . . . . 11 (𝑛 = 𝑥 → (𝐺𝑛) = (𝐺𝑥))
78 id 22 . . . . . . . . . . 11 (𝑛 = 𝑥𝑛 = 𝑥)
7977, 78oveq12d 7273 . . . . . . . . . 10 (𝑛 = 𝑥 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑥) − 𝑥))
80 ovex 7288 . . . . . . . . . 10 ((𝐺𝑥) − 𝑥) ∈ V
8179, 32, 80fvmpt 6857 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
828, 81syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑥) = ((𝐺𝑥) − 𝑥))
83 fveq2 6756 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝐺𝑛) = (𝐺𝑦))
84 id 22 . . . . . . . . . . 11 (𝑛 = 𝑦𝑛 = 𝑦)
8583, 84oveq12d 7273 . . . . . . . . . 10 (𝑛 = 𝑦 → ((𝐺𝑛) − 𝑛) = ((𝐺𝑦) − 𝑦))
86 ovex 7288 . . . . . . . . . 10 ((𝐺𝑦) − 𝑦) ∈ V
8785, 32, 86fvmpt 6857 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8811, 87syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝑛 ∈ ℕ ↦ ((𝐺𝑛) − 𝑛))‘𝑦) = ((𝐺𝑦) − 𝑦))
8976, 82, 883brtr3d 5101 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑥) ≤ ((𝐺𝑦) − 𝑦))
9013, 15, 18, 20, 89ltletrd 11065 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦))
9110, 17, 12ltsub1d 11514 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → ((𝐺𝑥) < (𝐺𝑦) ↔ ((𝐺𝑥) − 𝑦) < ((𝐺𝑦) − 𝑦)))
9290, 91mpbird 256 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 < 𝑦) → (𝐺𝑥) < (𝐺𝑦))
9392ex 412 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
9493ralrimivva 3114 . . 3 (𝜑 → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
95 ss2ralv 3985 . . 3 (𝑆 ⊆ ℕ → (∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
9694, 95mpan9 506 . 2 ((𝜑𝑆 ⊆ ℕ) → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
97 nnssre 11907 . . . . 5 ℕ ⊆ ℝ
98 ltso 10986 . . . . 5 < Or ℝ
99 soss 5514 . . . . 5 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
10097, 98, 99mp2 9 . . . 4 < Or ℕ
101100a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or ℕ)
102 soss 5514 . . . . 5 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
1035, 98, 102mp2 9 . . . 4 < Or 𝑍
104103a1i 11 . . 3 ((𝜑𝑆 ⊆ ℕ) → < Or 𝑍)
1056adantr 480 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝐺:ℕ⟶𝑍)
106 simpr 484 . . 3 ((𝜑𝑆 ⊆ ℕ) → 𝑆 ⊆ ℕ)
107 soisores 7178 . . 3 ((( < Or ℕ ∧ < Or 𝑍) ∧ (𝐺:ℕ⟶𝑍𝑆 ⊆ ℕ)) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
108101, 104, 105, 106, 107syl22anc 835 . 2 ((𝜑𝑆 ⊆ ℕ) → ((𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
10996, 108mpbird 256 1 ((𝜑𝑆 ⊆ ℕ) → (𝐺𝑆) Isom < , < (𝑆, (𝐺𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070  cmpt 5153   Or wor 5493  cres 5582  cima 5583  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  cuz 12511  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  isercolllem2  15305  isercolllem3  15306  isercoll  15307
  Copyright terms: Public domain W3C validator