MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilres Structured version   Visualization version   GIF version

Theorem cfilres 25330
Description: Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem cfilres
Dummy variables 𝑢 𝑠 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
2 filfbas 23856 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
31, 2syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
4 simp3 1139 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
5 fbncp 23847 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
63, 4, 5syl2anc 584 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
7 filelss 23860 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
873adant1 1131 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
9 trfil3 23896 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
101, 8, 9syl2anc 584 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
116, 10mpbird 257 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
1211adantr 480 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
13 cfili 25302 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥)
1413adantll 714 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥)
15 simpll2 1214 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
16 simpll3 1215 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑌𝐹)
1715, 16jca 511 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹))
18 elrestr 17473 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
19183expa 1119 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
2017, 19sylan 580 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
21 inss1 4237 . . . . . . . . . 10 (𝑠𝑌) ⊆ 𝑠
22 ss2ralv 4054 . . . . . . . . . 10 ((𝑠𝑌) ⊆ 𝑠 → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
2321, 22ax-mp 5 . . . . . . . . 9 (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥)
24 elinel2 4202 . . . . . . . . . . . 12 (𝑢 ∈ (𝑠𝑌) → 𝑢𝑌)
25 elinel2 4202 . . . . . . . . . . . 12 (𝑣 ∈ (𝑠𝑌) → 𝑣𝑌)
26 ovres 7599 . . . . . . . . . . . . 13 ((𝑢𝑌𝑣𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
2726breq1d 5153 . . . . . . . . . . . 12 ((𝑢𝑌𝑣𝑌) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
2824, 25, 27syl2an 596 . . . . . . . . . . 11 ((𝑢 ∈ (𝑠𝑌) ∧ 𝑣 ∈ (𝑠𝑌)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
2928ralbidva 3176 . . . . . . . . . 10 (𝑢 ∈ (𝑠𝑌) → (∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
3029ralbiia 3091 . . . . . . . . 9 (∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥)
3123, 30sylibr 234 . . . . . . . 8 (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
32 raleq 3323 . . . . . . . . . . 11 (𝑦 = (𝑠𝑌) → (∀𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3332raleqbi1dv 3338 . . . . . . . . . 10 (𝑦 = (𝑠𝑌) → (∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3433rspcev 3622 . . . . . . . . 9 (((𝑠𝑌) ∈ (𝐹t 𝑌) ∧ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
3534ex 412 . . . . . . . 8 ((𝑠𝑌) ∈ (𝐹t 𝑌) → (∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3620, 31, 35syl2im 40 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3736rexlimdva 3155 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3814, 37mpd 15 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
3938ralrimiva 3146 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
40 simp1 1137 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐷 ∈ (∞Met‘𝑋))
41 xmetres2 24371 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
4240, 8, 41syl2anc 584 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
4342adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
44 iscfil2 25300 . . . . 5 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
4543, 44syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
4612, 39, 45mpbir2and 713 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
4746ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) → (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
48 cfilresi 25329 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷))
4948ex 412 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷)))
50493ad2ant1 1134 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷)))
51 fgtr 23898 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑋filGen(𝐹t 𝑌)) = 𝐹)
52513adant1 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑋filGen(𝐹t 𝑌)) = 𝐹)
5352eleq1d 2826 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷) ↔ 𝐹 ∈ (CauFil‘𝐷)))
5450, 53sylibd 239 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝐹 ∈ (CauFil‘𝐷)))
5547, 54impbid 212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  cin 3950  wss 3951   class class class wbr 5143   × cxp 5683  cres 5687  cfv 6561  (class class class)co 7431   < clt 11295  +crp 13034  t crest 17465  ∞Metcxmet 21349  fBascfbas 21352  filGencfg 21353  Filcfil 23853  CauFilccfil 25286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-rest 17467  df-xmet 21357  df-fbas 21361  df-fg 21362  df-fil 23854  df-cfil 25289
This theorem is referenced by:  metsscmetcld  25349
  Copyright terms: Public domain W3C validator