Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
2 | | filfbas 22907 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
4 | | simp3 1136 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
5 | | fbncp 22898 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
6 | 3, 4, 5 | syl2anc 583 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
7 | | filelss 22911 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
8 | 7 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
9 | | trfil3 22947 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
10 | 1, 8, 9 | syl2anc 583 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
11 | 6, 10 | mpbird 256 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) |
12 | 11 | adantr 480 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) |
13 | | cfili 24337 |
. . . . . . 7
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) →
∃𝑠 ∈ 𝐹 ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥) |
14 | 13 | adantll 710 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
∃𝑠 ∈ 𝐹 ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥) |
15 | | simpll2 1211 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋)) |
16 | | simpll3 1212 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑌 ∈ 𝐹) |
17 | 15, 16 | jca 511 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹)) |
18 | | elrestr 17056 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹 ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)) |
19 | 18 | 3expa 1116 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)) |
20 | 17, 19 | sylan 579 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠 ∈ 𝐹) → (𝑠 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)) |
21 | | inss1 4159 |
. . . . . . . . . 10
⊢ (𝑠 ∩ 𝑌) ⊆ 𝑠 |
22 | | ss2ralv 3985 |
. . . . . . . . . 10
⊢ ((𝑠 ∩ 𝑌) ⊆ 𝑠 → (∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢𝐷𝑣) < 𝑥)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢𝐷𝑣) < 𝑥) |
24 | | elinel2 4126 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (𝑠 ∩ 𝑌) → 𝑢 ∈ 𝑌) |
25 | | elinel2 4126 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑠 ∩ 𝑌) → 𝑣 ∈ 𝑌) |
26 | | ovres 7416 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
27 | 26 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥)) |
28 | 24, 25, 27 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ (𝑠 ∩ 𝑌) ∧ 𝑣 ∈ (𝑠 ∩ 𝑌)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥)) |
29 | 28 | ralbidva 3119 |
. . . . . . . . . 10
⊢ (𝑢 ∈ (𝑠 ∩ 𝑌) → (∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢𝐷𝑣) < 𝑥)) |
30 | 29 | ralbiia 3089 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
(𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢𝐷𝑣) < 𝑥) |
31 | 23, 30 | sylibr 233 |
. . . . . . . 8
⊢
(∀𝑢 ∈
𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
32 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑠 ∩ 𝑌) → (∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)) |
33 | 32 | raleqbi1dv 3331 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑠 ∩ 𝑌) → (∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)) |
34 | 33 | rspcev 3552 |
. . . . . . . . 9
⊢ (((𝑠 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌) ∧ ∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) → ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
35 | 34 | ex 412 |
. . . . . . . 8
⊢ ((𝑠 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌) → (∀𝑢 ∈ (𝑠 ∩ 𝑌)∀𝑣 ∈ (𝑠 ∩ 𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)) |
36 | 20, 31, 35 | syl2im 40 |
. . . . . . 7
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠 ∈ 𝐹) → (∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)) |
37 | 36 | rexlimdva 3212 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
(∃𝑠 ∈ 𝐹 ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)) |
38 | 14, 37 | mpd 15 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
39 | 38 | ralrimiva 3107 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
40 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐷 ∈ (∞Met‘𝑋)) |
41 | | xmetres2 23422 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
42 | 40, 8, 41 | syl2anc 583 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
43 | 42 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
44 | | iscfil2 24335 |
. . . . 5
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → ((𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))) |
45 | 43, 44 | syl 17 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ((𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝐹 ↾t 𝑌)∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))) |
46 | 12, 39, 45 | mpbir2and 709 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |
47 | 46 | ex 412 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))) |
48 | | cfilresi 24364 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen(𝐹 ↾t 𝑌)) ∈ (CauFil‘𝐷)) |
49 | 48 | ex 412 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹 ↾t 𝑌)) ∈ (CauFil‘𝐷))) |
50 | 49 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹 ↾t 𝑌)) ∈ (CauFil‘𝐷))) |
51 | | fgtr 22949 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝑌)) = 𝐹) |
52 | 51 | 3adant1 1128 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝑌)) = 𝐹) |
53 | 52 | eleq1d 2823 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝑋filGen(𝐹 ↾t 𝑌)) ∈ (CauFil‘𝐷) ↔ 𝐹 ∈ (CauFil‘𝐷))) |
54 | 50, 53 | sylibd 238 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝐹 ∈ (CauFil‘𝐷))) |
55 | 47, 54 | impbid 211 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))) |