Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilres Structured version   Visualization version   GIF version

Theorem cfilres 23898
 Description: Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem cfilres
Dummy variables 𝑢 𝑠 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
2 filfbas 22451 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
31, 2syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
4 simp3 1135 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
5 fbncp 22442 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
63, 4, 5syl2anc 587 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
7 filelss 22455 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
873adant1 1127 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
9 trfil3 22491 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
101, 8, 9syl2anc 587 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
116, 10mpbird 260 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
1211adantr 484 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
13 cfili 23870 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥)
1413adantll 713 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥)
15 simpll2 1210 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
16 simpll3 1211 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑌𝐹)
1715, 16jca 515 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹))
18 elrestr 16700 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
19183expa 1115 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
2017, 19sylan 583 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
21 inss1 4190 . . . . . . . . . 10 (𝑠𝑌) ⊆ 𝑠
22 ss2ralv 4021 . . . . . . . . . 10 ((𝑠𝑌) ⊆ 𝑠 → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
2321, 22ax-mp 5 . . . . . . . . 9 (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥)
24 elinel2 4158 . . . . . . . . . . . 12 (𝑢 ∈ (𝑠𝑌) → 𝑢𝑌)
25 elinel2 4158 . . . . . . . . . . . 12 (𝑣 ∈ (𝑠𝑌) → 𝑣𝑌)
26 ovres 7305 . . . . . . . . . . . . 13 ((𝑢𝑌𝑣𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
2726breq1d 5063 . . . . . . . . . . . 12 ((𝑢𝑌𝑣𝑌) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
2824, 25, 27syl2an 598 . . . . . . . . . . 11 ((𝑢 ∈ (𝑠𝑌) ∧ 𝑣 ∈ (𝑠𝑌)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
2928ralbidva 3191 . . . . . . . . . 10 (𝑢 ∈ (𝑠𝑌) → (∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
3029ralbiia 3159 . . . . . . . . 9 (∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥)
3123, 30sylibr 237 . . . . . . . 8 (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
32 raleq 3397 . . . . . . . . . . 11 (𝑦 = (𝑠𝑌) → (∀𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3332raleqbi1dv 3395 . . . . . . . . . 10 (𝑦 = (𝑠𝑌) → (∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3433rspcev 3609 . . . . . . . . 9 (((𝑠𝑌) ∈ (𝐹t 𝑌) ∧ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
3534ex 416 . . . . . . . 8 ((𝑠𝑌) ∈ (𝐹t 𝑌) → (∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3620, 31, 35syl2im 40 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3736rexlimdva 3277 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3814, 37mpd 15 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
3938ralrimiva 3177 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
40 simp1 1133 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐷 ∈ (∞Met‘𝑋))
41 xmetres2 22966 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
4240, 8, 41syl2anc 587 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
4342adantr 484 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
44 iscfil2 23868 . . . . 5 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
4543, 44syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
4612, 39, 45mpbir2and 712 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
4746ex 416 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) → (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
48 cfilresi 23897 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷))
4948ex 416 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷)))
50493ad2ant1 1130 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷)))
51 fgtr 22493 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑋filGen(𝐹t 𝑌)) = 𝐹)
52513adant1 1127 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑋filGen(𝐹t 𝑌)) = 𝐹)
5352eleq1d 2900 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷) ↔ 𝐹 ∈ (CauFil‘𝐷)))
5450, 53sylibd 242 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝐹 ∈ (CauFil‘𝐷)))
5547, 54impbid 215 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134   ∖ cdif 3916   ∩ cin 3918   ⊆ wss 3919   class class class wbr 5053   × cxp 5541   ↾ cres 5545  ‘cfv 6344  (class class class)co 7146   < clt 10669  ℝ+crp 12384   ↾t crest 16692  ∞Metcxmet 20525  fBascfbas 20528  filGencfg 20529  Filcfil 22448  CauFilccfil 23854 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11695  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ico 12739  df-rest 16694  df-xmet 20533  df-fbas 20537  df-fg 20538  df-fil 22449  df-cfil 23857 This theorem is referenced by:  metsscmetcld  23917
 Copyright terms: Public domain W3C validator