MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi3 Structured version   Visualization version   GIF version

Theorem dffi3 9315
Description: The set of finite intersections can be "constructed" inductively by iterating binary intersection ω-many times. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
dffi3.1 𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))
Assertion
Ref Expression
dffi3 (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑉   𝑦,𝑢,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑢)   𝑅(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem dffi3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 9307 . . . 4 (𝐴𝑉 → (fi‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)})
2 fr0g 8355 . . . . . . . 8 (𝐴𝑉 → ((rec(𝑅, 𝐴) ↾ ω)‘∅) = 𝐴)
3 frfnom 8354 . . . . . . . . 9 (rec(𝑅, 𝐴) ↾ ω) Fn ω
4 peano1 7819 . . . . . . . . 9 ∅ ∈ ω
5 fnfvelrn 7013 . . . . . . . . 9 (((rec(𝑅, 𝐴) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘∅) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
63, 4, 5mp2an 692 . . . . . . . 8 ((rec(𝑅, 𝐴) ↾ ω)‘∅) ∈ ran (rec(𝑅, 𝐴) ↾ ω)
72, 6eqeltrrdi 2840 . . . . . . 7 (𝐴𝑉𝐴 ∈ ran (rec(𝑅, 𝐴) ↾ ω))
8 elssuni 4889 . . . . . . 7 (𝐴 ∈ ran (rec(𝑅, 𝐴) ↾ ω) → 𝐴 ran (rec(𝑅, 𝐴) ↾ ω))
97, 8syl 17 . . . . . 6 (𝐴𝑉𝐴 ran (rec(𝑅, 𝐴) ↾ ω))
10 reeanv 3204 . . . . . . . . 9 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
11 eliun 4945 . . . . . . . . . 10 (𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ↔ ∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚))
12 eliun 4945 . . . . . . . . . 10 (𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
1311, 12anbi12i 628 . . . . . . . . 9 ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
14 fniunfv 7181 . . . . . . . . . . . 12 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) = ran (rec(𝑅, 𝐴) ↾ ω))
1514eleq2d 2817 . . . . . . . . . . 11 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → (𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ↔ 𝑐 ran (rec(𝑅, 𝐴) ↾ ω)))
16 fniunfv 7181 . . . . . . . . . . . 12 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) = ran (rec(𝑅, 𝐴) ↾ ω))
1716eleq2d 2817 . . . . . . . . . . 11 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → (𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
1815, 17anbi12d 632 . . . . . . . . . 10 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω))))
193, 18ax-mp 5 . . . . . . . . 9 ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
2010, 13, 193bitr2i 299 . . . . . . . 8 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
21 ordom 7806 . . . . . . . . . . . . . . . 16 Ord ω
22 ordunel 7757 . . . . . . . . . . . . . . . 16 ((Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
2321, 22mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
2423adantl 481 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑚𝑛) ∈ ω)
25 simprl 770 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑚 ∈ ω)
2624, 25jca 511 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω))
27 nnon 7802 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω → 𝑦 ∈ On)
28 nnon 7802 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → 𝑥 ∈ On)
2928ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
30 onsseleq 6347 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
3127, 29, 30syl2an2 686 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
32 rzal 4459 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
3332biantrud 531 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ∅ → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))))
34 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘∅))
3534sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ∅ → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴)))
3633, 35bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ∅ → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴)))
37 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
3837sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)))
3937sseq2d 3967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
4039raleqbi1dv 3304 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑛 → (∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
4138, 40anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑛 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))))
42 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = suc 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
4342sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = suc 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴)))
4442sseq2d 3967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = suc 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
4544raleqbi1dv 3304 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = suc 𝑛 → (∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
4643, 45anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = suc 𝑛 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
47 ssfii 9303 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
482, 47eqsstrd 3969 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑉 → ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴))
49 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
50 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 = 𝑥)
51 ineq1 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑎 = 𝑥 → (𝑎𝑏) = (𝑥𝑏))
5251eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 𝑥 → (𝑥 = (𝑎𝑏) ↔ 𝑥 = (𝑥𝑏)))
53 ineq2 4164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑥 → (𝑥𝑏) = (𝑥𝑥))
54 inidm 4177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥𝑥) = 𝑥
5553, 54eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑏 = 𝑥 → (𝑥𝑏) = 𝑥)
5655eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑥 → (𝑥 = (𝑥𝑏) ↔ 𝑥 = 𝑥))
5752, 56rspc2ev 3590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑥 = 𝑥) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
5849, 49, 50, 57syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
59 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
6059rnmpo 7479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) = {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏)}
6160eqabri 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
6258, 61sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
6362ssriv 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
64 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → 𝑛 ∈ ω)
65 fvex 6835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
6665uniex 7674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
6766pwex 5318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
68 inss1 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏) ⊆ 𝑎
69 elssuni 4889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7168, 70sstrid 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
72 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑎 ∈ V
7372inex1 5255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏) ∈ V
7473elpw 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7571, 74sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7675rgen2 3172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
7759fmpo 8000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7876, 77mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
79 frn 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
8078, 79ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
8167, 80ssexi 5260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ∈ V
82 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣𝐴
83 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣𝑛
84 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
85 dffi3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))
86 mpoeq12 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑢 = 𝑣𝑢 = 𝑣) → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)))
8786anidms 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 = 𝑣 → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)))
88 ineq1 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 = 𝑎 → (𝑦𝑧) = (𝑎𝑧))
89 ineq2 4164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (𝑎𝑧) = (𝑎𝑏))
9088, 89cbvmpov 7441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)) = (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))
9187, 90eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 = 𝑣 → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9291rneqd 5878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 = 𝑣 → ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9392cbvmptv 5195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧))) = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9485, 93eqtri 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑅 = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
95 rdgeq1 8330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑅 = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))) → rec(𝑅, 𝐴) = rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴))
9694, 95ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 rec(𝑅, 𝐴) = rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴)
9796reseq1i 5924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (rec(𝑅, 𝐴) ↾ ω) = (rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴) ↾ ω)
98 mpoeq12 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
9998anidms 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10099rneqd 5878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10182, 83, 84, 97, 100frsucmpt 8357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ω ∧ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ∈ V) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10264, 81, 101sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10363, 102sseqtrrid 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
104 sstr2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
105103, 104syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
106105ralimdv 3146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
107 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑛 ∈ V
108 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
109108sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
110107, 109ralsn 4634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
111103, 110sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
112106, 111jctird 526 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
113 df-suc 6312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑛 = (𝑛 ∪ {𝑛})
114113raleqi 3290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ∀𝑦 ∈ (𝑛 ∪ {𝑛})((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
115 ralunb 4147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑦 ∈ (𝑛 ∪ {𝑛})((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
116114, 115bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
117112, 116imbitrrdi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
118 fiin 9306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ∈ (fi‘𝐴) ∧ 𝑏 ∈ (fi‘𝐴)) → (𝑎𝑏) ∈ (fi‘𝐴))
119118rgen2 3172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴)
120 ss2ralv 4005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (∀𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴)))
121119, 120mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴))
12259fmpo 8000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴))
123121, 122sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴))
124123frnd 6659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
125124adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
126102, 125eqsstrd 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴))
127117, 126jctild 525 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
128127expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
129128a1d 25 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → (𝐴𝑉 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))))
13036, 41, 46, 48, 129finds2 7828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ω → (𝐴𝑉 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))))
131130impcom 407 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝑥 ∈ ω) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
132131simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝑥 ∈ ω) → ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
133132r19.21bi 3224 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
134133ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝑥 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
135134adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
136 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
137 eqimss 3993 . . . . . . . . . . . . . . . . . . . 20 (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
138136, 137syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
139138a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
140135, 139jaod 859 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝑦𝑥𝑦 = 𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
14131, 140sylbid 240 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
142141ralrimiva 3124 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝑥 ∈ ω) → ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
143142ralrimiva 3124 . . . . . . . . . . . . . 14 (𝐴𝑉 → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
144143adantr 480 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
145 ssun1 4128 . . . . . . . . . . . . . 14 𝑚 ⊆ (𝑚𝑛)
146145a1i 11 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑚 ⊆ (𝑚𝑛))
147 sseq2 3961 . . . . . . . . . . . . . . 15 (𝑥 = (𝑚𝑛) → (𝑦𝑥𝑦 ⊆ (𝑚𝑛)))
148 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
149148sseq2d 3967 . . . . . . . . . . . . . . 15 (𝑥 = (𝑚𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
150147, 149imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = (𝑚𝑛) → ((𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
151 sseq1 3960 . . . . . . . . . . . . . . 15 (𝑦 = 𝑚 → (𝑦 ⊆ (𝑚𝑛) ↔ 𝑚 ⊆ (𝑚𝑛)))
152 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑚 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑚))
153152sseq1d 3966 . . . . . . . . . . . . . . 15 (𝑦 = 𝑚 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
154151, 153imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = 𝑚 → ((𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) ↔ (𝑚 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
155150, 154rspc2v 3588 . . . . . . . . . . . . 13 (((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) → (𝑚 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
15626, 144, 146, 155syl3c 66 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
157156sseld 3933 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) → 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
158 simprr 772 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑛 ∈ ω)
15924, 158jca 511 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑚𝑛) ∈ ω ∧ 𝑛 ∈ ω))
160 ssun2 4129 . . . . . . . . . . . . . 14 𝑛 ⊆ (𝑚𝑛)
161160a1i 11 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑛 ⊆ (𝑚𝑛))
162 sseq1 3960 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (𝑦 ⊆ (𝑚𝑛) ↔ 𝑛 ⊆ (𝑚𝑛)))
163108sseq1d 3966 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
164162, 163imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = 𝑛 → ((𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) ↔ (𝑛 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
165150, 164rspc2v 3588 . . . . . . . . . . . . 13 (((𝑚𝑛) ∈ ω ∧ 𝑛 ∈ ω) → (∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) → (𝑛 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
166159, 144, 161, 165syl3c 66 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
167166sseld 3933 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
16823ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑚𝑛) ∈ ω)
169 peano2 7820 . . . . . . . . . . . . . . 15 ((𝑚𝑛) ∈ ω → suc (𝑚𝑛) ∈ ω)
170 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = suc (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)))
171170ssiun2s 4997 . . . . . . . . . . . . . . 15 (suc (𝑚𝑛) ∈ ω → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) ⊆ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
172168, 169, 1713syl 18 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) ⊆ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
173 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
174 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
175 eqidd 2732 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) = (𝑐𝑑))
176 ineq1 4163 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → (𝑎𝑏) = (𝑐𝑏))
177176eqeq2d 2742 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ((𝑐𝑑) = (𝑎𝑏) ↔ (𝑐𝑑) = (𝑐𝑏)))
178 ineq2 4164 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑑 → (𝑐𝑏) = (𝑐𝑑))
179178eqeq2d 2742 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑑 → ((𝑐𝑑) = (𝑐𝑏) ↔ (𝑐𝑑) = (𝑐𝑑)))
180177, 179rspc2ev 3590 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ (𝑐𝑑) = (𝑐𝑑)) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
181173, 174, 175, 180syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
182 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑐 ∈ V
183182inex1 5255 . . . . . . . . . . . . . . . . . 18 (𝑐𝑑) ∈ V
184 eqeq1 2735 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑐𝑑) → (𝑥 = (𝑎𝑏) ↔ (𝑐𝑑) = (𝑎𝑏)))
1851842rexbidv 3197 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑐𝑑) → (∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏) ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏)))
186183, 185elab 3635 . . . . . . . . . . . . . . . . 17 ((𝑐𝑑) ∈ {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)} ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
187181, 186sylibr 234 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)})
188 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏))
189188rnmpo 7479 . . . . . . . . . . . . . . . 16 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) = {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)}
190187, 189eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
191 fvex 6835 . . . . . . . . . . . . . . . . . . 19 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
192191uniex 7674 . . . . . . . . . . . . . . . . . 18 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
193192pwex 5318 . . . . . . . . . . . . . . . . 17 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
194 elssuni 4889 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
19568, 194sstrid 3946 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
19673elpw 4554 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
197195, 196sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
198197adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
199198rgen2 3172 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
200188fmpo 8000 . . . . . . . . . . . . . . . . . . 19 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
201199, 200mpbi 230 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
202 frn 6658 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
203201, 202ax-mp 5 . . . . . . . . . . . . . . . . 17 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
204193, 203ssexi 5260 . . . . . . . . . . . . . . . 16 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ∈ V
205 nfcv 2894 . . . . . . . . . . . . . . . . 17 𝑣(𝑚𝑛)
206 nfcv 2894 . . . . . . . . . . . . . . . . 17 𝑣ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏))
207 mpoeq12 7419 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
208207anidms 566 . . . . . . . . . . . . . . . . . 18 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
209208rneqd 5878 . . . . . . . . . . . . . . . . 17 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
21082, 205, 206, 97, 209frsucmpt 8357 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ∈ V) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
211168, 204, 210sylancl 586 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
212190, 211eleqtrrd 2834 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)))
213172, 212sseldd 3935 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
214 fniunfv 7181 . . . . . . . . . . . . . 14 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ran (rec(𝑅, 𝐴) ↾ ω))
2153, 214ax-mp 5 . . . . . . . . . . . . 13 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ran (rec(𝑅, 𝐴) ↾ ω)
216213, 215eleqtrdi 2841 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
217216ex 412 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
218157, 167, 217syl2and 608 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
219218rexlimdvva 3189 . . . . . . . . 9 (𝐴𝑉 → (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
220219imp 406 . . . . . . . 8 ((𝐴𝑉 ∧ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
22120, 220sylan2br 595 . . . . . . 7 ((𝐴𝑉 ∧ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
222221ralrimivva 3175 . . . . . 6 (𝐴𝑉 → ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
223131simpld 494 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴))
224 fvex 6835 . . . . . . . . . . . . 13 (fi‘𝐴) ∈ V
225224elpw2 5272 . . . . . . . . . . . 12 (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴))
226223, 225sylibr 234 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴))
227226ralrimiva 3124 . . . . . . . . . 10 (𝐴𝑉 → ∀𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴))
228 fnfvrnss 7054 . . . . . . . . . 10 (((rec(𝑅, 𝐴) ↾ ω) Fn ω ∧ ∀𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴)) → ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴))
2293, 227, 228sylancr 587 . . . . . . . . 9 (𝐴𝑉 → ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴))
230 sspwuni 5048 . . . . . . . . 9 (ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴) ↔ ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴))
231229, 230sylib 218 . . . . . . . 8 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴))
232 ssexg 5261 . . . . . . . 8 (( ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴) ∧ (fi‘𝐴) ∈ V) → ran (rec(𝑅, 𝐴) ↾ ω) ∈ V)
233231, 224, 232sylancl 586 . . . . . . 7 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ∈ V)
234 sseq2 3961 . . . . . . . . 9 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (𝐴𝑥𝐴 ran (rec(𝑅, 𝐴) ↾ ω)))
235 eleq2 2820 . . . . . . . . . . 11 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → ((𝑐𝑑) ∈ 𝑥 ↔ (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
236235raleqbi1dv 3304 . . . . . . . . . 10 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (∀𝑑𝑥 (𝑐𝑑) ∈ 𝑥 ↔ ∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
237236raleqbi1dv 3304 . . . . . . . . 9 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥 ↔ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
238234, 237anbi12d 632 . . . . . . . 8 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → ((𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥) ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
239238elabg 3632 . . . . . . 7 ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ V → ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
240233, 239syl 17 . . . . . 6 (𝐴𝑉 → ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
2419, 222, 240mpbir2and 713 . . . . 5 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)})
242 intss1 4913 . . . . 5 ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
243241, 242syl 17 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
2441, 243eqsstrd 3969 . . 3 (𝐴𝑉 → (fi‘𝐴) ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
245244, 231eqssd 3952 . 2 (𝐴𝑉 → (fi‘𝐴) = ran (rec(𝑅, 𝐴) ↾ ω))
246 df-ima 5629 . . 3 (rec(𝑅, 𝐴) “ ω) = ran (rec(𝑅, 𝐴) ↾ ω)
247246unieqi 4871 . 2 (rec(𝑅, 𝐴) “ ω) = ran (rec(𝑅, 𝐴) ↾ ω)
248245, 247eqtr4di 2784 1 (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  cun 3900  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859   cint 4897   ciun 4941  cmpt 5172   × cxp 5614  ran crn 5617  cres 5618  cima 5619  Ord word 6305  Oncon0 6306  suc csuc 6308   Fn wfn 6476  wf 6477  cfv 6481  cmpo 7348  ωcom 7796  reccrdg 8328  ficfi 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator