MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi3 Structured version   Visualization version   GIF version

Theorem dffi3 9430
Description: The set of finite intersections can be "constructed" inductively by iterating binary intersection ω-many times. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
dffi3.1 𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))
Assertion
Ref Expression
dffi3 (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑉   𝑦,𝑢,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑢)   𝑅(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem dffi3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 9422 . . . 4 (𝐴𝑉 → (fi‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)})
2 fr0g 8440 . . . . . . . 8 (𝐴𝑉 → ((rec(𝑅, 𝐴) ↾ ω)‘∅) = 𝐴)
3 frfnom 8439 . . . . . . . . 9 (rec(𝑅, 𝐴) ↾ ω) Fn ω
4 peano1 7883 . . . . . . . . 9 ∅ ∈ ω
5 fnfvelrn 7083 . . . . . . . . 9 (((rec(𝑅, 𝐴) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘∅) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
63, 4, 5mp2an 688 . . . . . . . 8 ((rec(𝑅, 𝐴) ↾ ω)‘∅) ∈ ran (rec(𝑅, 𝐴) ↾ ω)
72, 6eqeltrrdi 2840 . . . . . . 7 (𝐴𝑉𝐴 ∈ ran (rec(𝑅, 𝐴) ↾ ω))
8 elssuni 4942 . . . . . . 7 (𝐴 ∈ ran (rec(𝑅, 𝐴) ↾ ω) → 𝐴 ran (rec(𝑅, 𝐴) ↾ ω))
97, 8syl 17 . . . . . 6 (𝐴𝑉𝐴 ran (rec(𝑅, 𝐴) ↾ ω))
10 reeanv 3224 . . . . . . . . 9 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
11 eliun 5002 . . . . . . . . . 10 (𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ↔ ∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚))
12 eliun 5002 . . . . . . . . . 10 (𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
1311, 12anbi12i 625 . . . . . . . . 9 ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
14 fniunfv 7250 . . . . . . . . . . . 12 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) = ran (rec(𝑅, 𝐴) ↾ ω))
1514eleq2d 2817 . . . . . . . . . . 11 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → (𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ↔ 𝑐 ran (rec(𝑅, 𝐴) ↾ ω)))
16 fniunfv 7250 . . . . . . . . . . . 12 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) = ran (rec(𝑅, 𝐴) ↾ ω))
1716eleq2d 2817 . . . . . . . . . . 11 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → (𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
1815, 17anbi12d 629 . . . . . . . . . 10 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω))))
193, 18ax-mp 5 . . . . . . . . 9 ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
2010, 13, 193bitr2i 298 . . . . . . . 8 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
21 ordom 7869 . . . . . . . . . . . . . . . 16 Ord ω
22 ordunel 7819 . . . . . . . . . . . . . . . 16 ((Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
2321, 22mp3an1 1446 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
2423adantl 480 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑚𝑛) ∈ ω)
25 simprl 767 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑚 ∈ ω)
2624, 25jca 510 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω))
27 nnon 7865 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω → 𝑦 ∈ On)
28 nnon 7865 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → 𝑥 ∈ On)
2928ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
30 onsseleq 6406 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
3127, 29, 30syl2an2 682 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
32 rzal 4509 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
3332biantrud 530 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ∅ → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))))
34 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘∅))
3534sseq1d 4014 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ∅ → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴)))
3633, 35bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ∅ → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴)))
37 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
3837sseq1d 4014 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)))
3937sseq2d 4015 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
4039raleqbi1dv 3331 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑛 → (∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
4138, 40anbi12d 629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑛 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))))
42 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = suc 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
4342sseq1d 4014 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = suc 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴)))
4442sseq2d 4015 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = suc 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
4544raleqbi1dv 3331 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = suc 𝑛 → (∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
4643, 45anbi12d 629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = suc 𝑛 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
47 ssfii 9418 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
482, 47eqsstrd 4021 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑉 → ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴))
49 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
50 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 = 𝑥)
51 ineq1 4206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑎 = 𝑥 → (𝑎𝑏) = (𝑥𝑏))
5251eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 𝑥 → (𝑥 = (𝑎𝑏) ↔ 𝑥 = (𝑥𝑏)))
53 ineq2 4207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑥 → (𝑥𝑏) = (𝑥𝑥))
54 inidm 4219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥𝑥) = 𝑥
5553, 54eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑏 = 𝑥 → (𝑥𝑏) = 𝑥)
5655eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑥 → (𝑥 = (𝑥𝑏) ↔ 𝑥 = 𝑥))
5752, 56rspc2ev 3625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑥 = 𝑥) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
5849, 49, 50, 57syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
59 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
6059rnmpo 7546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) = {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏)}
6160eqabri 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
6258, 61sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
6362ssriv 3987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
64 simpl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → 𝑛 ∈ ω)
65 fvex 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
6665uniex 7735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
6766pwex 5379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
68 inss1 4229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏) ⊆ 𝑎
69 elssuni 4942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7069adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7168, 70sstrid 3994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
72 vex 3476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑎 ∈ V
7372inex1 5318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏) ∈ V
7473elpw 4607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7571, 74sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7675rgen2 3195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
7759fmpo 8058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7876, 77mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
79 frn 6725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
8078, 79ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
8167, 80ssexi 5323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ∈ V
82 nfcv 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣𝐴
83 nfcv 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣𝑛
84 nfcv 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
85 dffi3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))
86 mpoeq12 7486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑢 = 𝑣𝑢 = 𝑣) → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)))
8786anidms 565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 = 𝑣 → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)))
88 ineq1 4206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 = 𝑎 → (𝑦𝑧) = (𝑎𝑧))
89 ineq2 4207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (𝑎𝑧) = (𝑎𝑏))
9088, 89cbvmpov 7508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)) = (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))
9187, 90eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 = 𝑣 → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9291rneqd 5938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 = 𝑣 → ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9392cbvmptv 5262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧))) = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9485, 93eqtri 2758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑅 = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
95 rdgeq1 8415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑅 = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))) → rec(𝑅, 𝐴) = rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴))
9694, 95ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 rec(𝑅, 𝐴) = rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴)
9796reseq1i 5978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (rec(𝑅, 𝐴) ↾ ω) = (rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴) ↾ ω)
98 mpoeq12 7486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
9998anidms 565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10099rneqd 5938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10182, 83, 84, 97, 100frsucmpt 8442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ω ∧ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ∈ V) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10264, 81, 101sylancl 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10363, 102sseqtrrid 4036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
104 sstr2 3990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
105103, 104syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
106105ralimdv 3167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
107 vex 3476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑛 ∈ V
108 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
109108sseq1d 4014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
110107, 109ralsn 4686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
111103, 110sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
112106, 111jctird 525 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
113 df-suc 6371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑛 = (𝑛 ∪ {𝑛})
114113raleqi 3321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ∀𝑦 ∈ (𝑛 ∪ {𝑛})((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
115 ralunb 4192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑦 ∈ (𝑛 ∪ {𝑛})((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
116114, 115bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
117112, 116imbitrrdi 251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
118 fiin 9421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ∈ (fi‘𝐴) ∧ 𝑏 ∈ (fi‘𝐴)) → (𝑎𝑏) ∈ (fi‘𝐴))
119118rgen2 3195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴)
120 ss2ralv 4053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (∀𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴)))
121119, 120mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴))
12259fmpo 8058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴))
123121, 122sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴))
124123frnd 6726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
125124adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
126102, 125eqsstrd 4021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴))
127117, 126jctild 524 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
128127expimpd 452 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
129128a1d 25 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → (𝐴𝑉 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))))
13036, 41, 46, 48, 129finds2 7895 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ω → (𝐴𝑉 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))))
131130impcom 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝑥 ∈ ω) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
132131simprd 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝑥 ∈ ω) → ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
133132r19.21bi 3246 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
134133ex 411 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝑥 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
135134adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
136 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
137 eqimss 4041 . . . . . . . . . . . . . . . . . . . 20 (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
138136, 137syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
139138a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
140135, 139jaod 855 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝑦𝑥𝑦 = 𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
14131, 140sylbid 239 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
142141ralrimiva 3144 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝑥 ∈ ω) → ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
143142ralrimiva 3144 . . . . . . . . . . . . . 14 (𝐴𝑉 → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
144143adantr 479 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
145 ssun1 4173 . . . . . . . . . . . . . 14 𝑚 ⊆ (𝑚𝑛)
146145a1i 11 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑚 ⊆ (𝑚𝑛))
147 sseq2 4009 . . . . . . . . . . . . . . 15 (𝑥 = (𝑚𝑛) → (𝑦𝑥𝑦 ⊆ (𝑚𝑛)))
148 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
149148sseq2d 4015 . . . . . . . . . . . . . . 15 (𝑥 = (𝑚𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
150147, 149imbi12d 343 . . . . . . . . . . . . . 14 (𝑥 = (𝑚𝑛) → ((𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
151 sseq1 4008 . . . . . . . . . . . . . . 15 (𝑦 = 𝑚 → (𝑦 ⊆ (𝑚𝑛) ↔ 𝑚 ⊆ (𝑚𝑛)))
152 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑚 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑚))
153152sseq1d 4014 . . . . . . . . . . . . . . 15 (𝑦 = 𝑚 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
154151, 153imbi12d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝑚 → ((𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) ↔ (𝑚 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
155150, 154rspc2v 3623 . . . . . . . . . . . . 13 (((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) → (𝑚 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
15626, 144, 146, 155syl3c 66 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
157156sseld 3982 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) → 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
158 simprr 769 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑛 ∈ ω)
15924, 158jca 510 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑚𝑛) ∈ ω ∧ 𝑛 ∈ ω))
160 ssun2 4174 . . . . . . . . . . . . . 14 𝑛 ⊆ (𝑚𝑛)
161160a1i 11 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑛 ⊆ (𝑚𝑛))
162 sseq1 4008 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (𝑦 ⊆ (𝑚𝑛) ↔ 𝑛 ⊆ (𝑚𝑛)))
163108sseq1d 4014 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
164162, 163imbi12d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝑛 → ((𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) ↔ (𝑛 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
165150, 164rspc2v 3623 . . . . . . . . . . . . 13 (((𝑚𝑛) ∈ ω ∧ 𝑛 ∈ ω) → (∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) → (𝑛 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
166159, 144, 161, 165syl3c 66 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
167166sseld 3982 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
16823ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑚𝑛) ∈ ω)
169 peano2 7885 . . . . . . . . . . . . . . 15 ((𝑚𝑛) ∈ ω → suc (𝑚𝑛) ∈ ω)
170 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑥 = suc (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)))
171170ssiun2s 5052 . . . . . . . . . . . . . . 15 (suc (𝑚𝑛) ∈ ω → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) ⊆ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
172168, 169, 1713syl 18 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) ⊆ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
173 simprl 767 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
174 simprr 769 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
175 eqidd 2731 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) = (𝑐𝑑))
176 ineq1 4206 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → (𝑎𝑏) = (𝑐𝑏))
177176eqeq2d 2741 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ((𝑐𝑑) = (𝑎𝑏) ↔ (𝑐𝑑) = (𝑐𝑏)))
178 ineq2 4207 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑑 → (𝑐𝑏) = (𝑐𝑑))
179178eqeq2d 2741 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑑 → ((𝑐𝑑) = (𝑐𝑏) ↔ (𝑐𝑑) = (𝑐𝑑)))
180177, 179rspc2ev 3625 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ (𝑐𝑑) = (𝑐𝑑)) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
181173, 174, 175, 180syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
182 vex 3476 . . . . . . . . . . . . . . . . . . 19 𝑐 ∈ V
183182inex1 5318 . . . . . . . . . . . . . . . . . 18 (𝑐𝑑) ∈ V
184 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑐𝑑) → (𝑥 = (𝑎𝑏) ↔ (𝑐𝑑) = (𝑎𝑏)))
1851842rexbidv 3217 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑐𝑑) → (∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏) ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏)))
186183, 185elab 3669 . . . . . . . . . . . . . . . . 17 ((𝑐𝑑) ∈ {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)} ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
187181, 186sylibr 233 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)})
188 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏))
189188rnmpo 7546 . . . . . . . . . . . . . . . 16 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) = {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)}
190187, 189eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
191 fvex 6905 . . . . . . . . . . . . . . . . . . 19 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
192191uniex 7735 . . . . . . . . . . . . . . . . . 18 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
193192pwex 5379 . . . . . . . . . . . . . . . . 17 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
194 elssuni 4942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
19568, 194sstrid 3994 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
19673elpw 4607 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
197195, 196sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
198197adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
199198rgen2 3195 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
200188fmpo 8058 . . . . . . . . . . . . . . . . . . 19 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
201199, 200mpbi 229 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
202 frn 6725 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
203201, 202ax-mp 5 . . . . . . . . . . . . . . . . 17 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
204193, 203ssexi 5323 . . . . . . . . . . . . . . . 16 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ∈ V
205 nfcv 2901 . . . . . . . . . . . . . . . . 17 𝑣(𝑚𝑛)
206 nfcv 2901 . . . . . . . . . . . . . . . . 17 𝑣ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏))
207 mpoeq12 7486 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
208207anidms 565 . . . . . . . . . . . . . . . . . 18 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
209208rneqd 5938 . . . . . . . . . . . . . . . . 17 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
21082, 205, 206, 97, 209frsucmpt 8442 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ∈ V) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
211168, 204, 210sylancl 584 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
212190, 211eleqtrrd 2834 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)))
213172, 212sseldd 3984 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
214 fniunfv 7250 . . . . . . . . . . . . . 14 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ran (rec(𝑅, 𝐴) ↾ ω))
2153, 214ax-mp 5 . . . . . . . . . . . . 13 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ran (rec(𝑅, 𝐴) ↾ ω)
216213, 215eleqtrdi 2841 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
217216ex 411 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
218157, 167, 217syl2and 606 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
219218rexlimdvva 3209 . . . . . . . . 9 (𝐴𝑉 → (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
220219imp 405 . . . . . . . 8 ((𝐴𝑉 ∧ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
22120, 220sylan2br 593 . . . . . . 7 ((𝐴𝑉 ∧ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
222221ralrimivva 3198 . . . . . 6 (𝐴𝑉 → ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
223131simpld 493 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴))
224 fvex 6905 . . . . . . . . . . . . 13 (fi‘𝐴) ∈ V
225224elpw2 5346 . . . . . . . . . . . 12 (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴))
226223, 225sylibr 233 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴))
227226ralrimiva 3144 . . . . . . . . . 10 (𝐴𝑉 → ∀𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴))
228 fnfvrnss 7123 . . . . . . . . . 10 (((rec(𝑅, 𝐴) ↾ ω) Fn ω ∧ ∀𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴)) → ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴))
2293, 227, 228sylancr 585 . . . . . . . . 9 (𝐴𝑉 → ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴))
230 sspwuni 5104 . . . . . . . . 9 (ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴) ↔ ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴))
231229, 230sylib 217 . . . . . . . 8 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴))
232 ssexg 5324 . . . . . . . 8 (( ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴) ∧ (fi‘𝐴) ∈ V) → ran (rec(𝑅, 𝐴) ↾ ω) ∈ V)
233231, 224, 232sylancl 584 . . . . . . 7 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ∈ V)
234 sseq2 4009 . . . . . . . . 9 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (𝐴𝑥𝐴 ran (rec(𝑅, 𝐴) ↾ ω)))
235 eleq2 2820 . . . . . . . . . . 11 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → ((𝑐𝑑) ∈ 𝑥 ↔ (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
236235raleqbi1dv 3331 . . . . . . . . . 10 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (∀𝑑𝑥 (𝑐𝑑) ∈ 𝑥 ↔ ∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
237236raleqbi1dv 3331 . . . . . . . . 9 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥 ↔ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
238234, 237anbi12d 629 . . . . . . . 8 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → ((𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥) ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
239238elabg 3667 . . . . . . 7 ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ V → ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
240233, 239syl 17 . . . . . 6 (𝐴𝑉 → ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
2419, 222, 240mpbir2and 709 . . . . 5 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)})
242 intss1 4968 . . . . 5 ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
243241, 242syl 17 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
2441, 243eqsstrd 4021 . . 3 (𝐴𝑉 → (fi‘𝐴) ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
245244, 231eqssd 4000 . 2 (𝐴𝑉 → (fi‘𝐴) = ran (rec(𝑅, 𝐴) ↾ ω))
246 df-ima 5690 . . 3 (rec(𝑅, 𝐴) “ ω) = ran (rec(𝑅, 𝐴) ↾ ω)
247246unieqi 4922 . 2 (rec(𝑅, 𝐴) “ ω) = ran (rec(𝑅, 𝐴) ↾ ω)
248245, 247eqtr4di 2788 1 (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  {cab 2707  wral 3059  wrex 3068  Vcvv 3472  cun 3947  cin 3948  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629   cuni 4909   cint 4951   ciun 4998  cmpt 5232   × cxp 5675  ran crn 5678  cres 5679  cima 5680  Ord word 6364  Oncon0 6365  suc csuc 6367   Fn wfn 6539  wf 6540  cfv 6544  cmpo 7415  ωcom 7859  reccrdg 8413  ficfi 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-fin 8947  df-fi 9410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator