MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopabss Structured version   Visualization version   GIF version

Theorem dmopabss 5912
Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopabss dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopabss
StepHypRef Expression
1 dmopab 5909 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)}
2 19.42v 1949 . . . 4 (∃𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝜑))
32abbii 2796 . . 3 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
4 ssab2 4071 . . 3 {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ⊆ 𝐴
53, 4eqsstri 4011 . 2 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} ⊆ 𝐴
61, 5eqsstri 4011 1 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1773  wcel 2098  {cab 2703  wss 3943  {copab 5203  dom cdm 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-dm 5679
This theorem is referenced by:  fvopab4ndm  7021  opabex  7217  pwfir  9178  perpln1  28469  dmadjss  31649  abrexdomjm  32253  abrexdom  37111
  Copyright terms: Public domain W3C validator