| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopabss | Structured version Visualization version GIF version | ||
| Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmopabss | ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab 5855 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 19.42v 1954 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 3 | 2 | abbii 2798 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
| 4 | ssab2 4029 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ⊆ 𝐴 | |
| 5 | 3, 4 | eqsstri 3981 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| 6 | 1, 5 | eqsstri 3981 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 ∈ wcel 2111 {cab 2709 ⊆ wss 3902 {copab 5153 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-dm 5626 |
| This theorem is referenced by: fvopab4ndm 6959 opabex 7154 pwfir 9201 perpln1 28686 dmadjss 31862 abrexdomjm 32482 fineqvnttrclse 35132 abrexdom 37769 modelaxreplem2 45011 |
| Copyright terms: Public domain | W3C validator |