Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmopabss | Structured version Visualization version GIF version |
Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
Ref | Expression |
---|---|
dmopabss | ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab 5826 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 19.42v 1957 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
3 | 2 | abbii 2808 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
4 | ssab2 4013 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 3956 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
6 | 1, 5 | eqsstri 3956 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1782 ∈ wcel 2106 {cab 2715 ⊆ wss 3888 {copab 5138 dom cdm 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5077 df-opab 5139 df-dm 5601 |
This theorem is referenced by: fvopab4ndm 6906 opabex 7098 pwfir 8957 perpln1 27069 dmadjss 30246 abrexdomjm 30849 abrexdom 35885 |
Copyright terms: Public domain | W3C validator |