MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopabss Structured version   Visualization version   GIF version

Theorem dmopabss 5829
Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopabss dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopabss
StepHypRef Expression
1 dmopab 5826 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)}
2 19.42v 1957 . . . 4 (∃𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝜑))
32abbii 2808 . . 3 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
4 ssab2 4013 . . 3 {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ⊆ 𝐴
53, 4eqsstri 3956 . 2 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} ⊆ 𝐴
61, 5eqsstri 3956 1 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396  wex 1782  wcel 2106  {cab 2715  wss 3888  {copab 5138  dom cdm 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pr 5354
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5077  df-opab 5139  df-dm 5601
This theorem is referenced by:  fvopab4ndm  6906  opabex  7098  pwfir  8957  perpln1  27069  dmadjss  30246  abrexdomjm  30849  abrexdom  35885
  Copyright terms: Public domain W3C validator