| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopabss | Structured version Visualization version GIF version | ||
| Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmopabss | ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab 5862 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 19.42v 1953 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 3 | 2 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
| 4 | ssab2 4032 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ⊆ 𝐴 | |
| 5 | 3, 4 | eqsstri 3984 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| 6 | 1, 5 | eqsstri 3984 | 1 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 {cab 2707 ⊆ wss 3905 {copab 5157 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-dm 5633 |
| This theorem is referenced by: fvopab4ndm 6964 opabex 7160 pwfir 9224 perpln1 28673 dmadjss 31849 abrexdomjm 32469 abrexdom 37709 modelaxreplem2 44953 |
| Copyright terms: Public domain | W3C validator |