![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fabexg | Structured version Visualization version GIF version |
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) |
Ref | Expression |
---|---|
fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
fabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7752 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
2 | pwexg 5378 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
3 | fabexg.1 | . . . . 5 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
4 | fssxp 6751 | . . . . . . . 8 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ⊆ (𝐴 × 𝐵)) | |
5 | velpw 4608 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵)) | |
6 | 4, 5 | sylibr 233 | . . . . . . 7 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) |
7 | 6 | anim1i 614 | . . . . . 6 ⊢ ((𝑥:𝐴⟶𝐵 ∧ 𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)) |
8 | 7 | ss2abi 4061 | . . . . 5 ⊢ {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
9 | 3, 8 | eqsstri 4014 | . . . 4 ⊢ 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
10 | ssab2 4074 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵) | |
11 | 9, 10 | sstri 3989 | . . 3 ⊢ 𝐹 ⊆ 𝒫 (𝐴 × 𝐵) |
12 | ssexg 5323 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V) | |
13 | 11, 12 | mpan 689 | . 2 ⊢ (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V) |
14 | 1, 2, 13 | 3syl 18 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 Vcvv 3471 ⊆ wss 3947 𝒫 cpw 4603 × cxp 5676 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-fun 6550 df-fn 6551 df-f 6552 |
This theorem is referenced by: fabex 7943 f1oabexg 7944 elghomlem1OLD 37358 |
Copyright terms: Public domain | W3C validator |