|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fabexg | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) | 
| Ref | Expression | 
|---|---|
| fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | 
| Ref | Expression | 
|---|---|
| fabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 3501 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3501 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | fabexg.1 | . . 3 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | simprl 771 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑥:𝐴⟶𝐵 ∧ 𝜑)) → 𝑥:𝐴⟶𝐵) | |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 6 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 7 | 4, 5, 6 | fabexd 7959 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) | 
| 8 | 3, 7 | eqeltrid 2845 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | 
| 9 | 1, 2, 8 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 Vcvv 3480 ⟶wf 6557 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 | 
| This theorem is referenced by: fabex 7962 mapex 7963 f1oabexgOLD 7965 elghomlem1OLD 37892 | 
| Copyright terms: Public domain | W3C validator |