MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexg Structured version   Visualization version   GIF version

Theorem fabexg 7942
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 7752 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
2 pwexg 5378 . 2 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
3 fabexg.1 . . . . 5 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 fssxp 6751 . . . . . . . 8 (𝑥:𝐴𝐵𝑥 ⊆ (𝐴 × 𝐵))
5 velpw 4608 . . . . . . . 8 (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵))
64, 5sylibr 233 . . . . . . 7 (𝑥:𝐴𝐵𝑥 ∈ 𝒫 (𝐴 × 𝐵))
76anim1i 614 . . . . . 6 ((𝑥:𝐴𝐵𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑))
87ss2abi 4061 . . . . 5 {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
93, 8eqsstri 4014 . . . 4 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
10 ssab2 4074 . . . 4 {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵)
119, 10sstri 3989 . . 3 𝐹 ⊆ 𝒫 (𝐴 × 𝐵)
12 ssexg 5323 . . 3 ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V)
1311, 12mpan 689 . 2 (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V)
141, 2, 133syl 18 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {cab 2705  Vcvv 3471  wss 3947  𝒫 cpw 4603   × cxp 5676  wf 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-fun 6550  df-fn 6551  df-f 6552
This theorem is referenced by:  fabex  7943  f1oabexg  7944  elghomlem1OLD  37358
  Copyright terms: Public domain W3C validator