MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexg Structured version   Visualization version   GIF version

Theorem fabexg 7976
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3509 . 2 (𝐵𝐷𝐵 ∈ V)
3 fabexg.1 . . 3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 simprl 770 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑥:𝐴𝐵𝜑)) → 𝑥:𝐴𝐵)
5 simpl 482 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
6 simpr 484 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
74, 5, 6fabexd 7975 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ∈ V)
83, 7eqeltrid 2848 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
91, 2, 8syl2an 595 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fabex  7978  mapex  7979  f1oabexgOLD  7981  elghomlem1OLD  37845
  Copyright terms: Public domain W3C validator