MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexg Structured version   Visualization version   GIF version

Theorem fabexg 7959
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 elex 3499 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3499 . 2 (𝐵𝐷𝐵 ∈ V)
3 fabexg.1 . . 3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 simprl 771 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑥:𝐴𝐵𝜑)) → 𝑥:𝐴𝐵)
5 simpl 482 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
6 simpr 484 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
74, 5, 6fabexd 7958 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ∈ V)
83, 7eqeltrid 2843 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
91, 2, 8syl2an 596 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  fabex  7961  mapex  7962  f1oabexgOLD  7964  elghomlem1OLD  37872
  Copyright terms: Public domain W3C validator