MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexg Structured version   Visualization version   GIF version

Theorem fabexg 7922
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 7734 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
2 pwexg 5376 . 2 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
3 fabexg.1 . . . . 5 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 fssxp 6743 . . . . . . . 8 (𝑥:𝐴𝐵𝑥 ⊆ (𝐴 × 𝐵))
5 velpw 4607 . . . . . . . 8 (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵))
64, 5sylibr 233 . . . . . . 7 (𝑥:𝐴𝐵𝑥 ∈ 𝒫 (𝐴 × 𝐵))
76anim1i 616 . . . . . 6 ((𝑥:𝐴𝐵𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑))
87ss2abi 4063 . . . . 5 {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
93, 8eqsstri 4016 . . . 4 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
10 ssab2 4076 . . . 4 {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵)
119, 10sstri 3991 . . 3 𝐹 ⊆ 𝒫 (𝐴 × 𝐵)
12 ssexg 5323 . . 3 ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V)
1311, 12mpan 689 . 2 (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V)
141, 2, 133syl 18 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475  wss 3948  𝒫 cpw 4602   × cxp 5674  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-fun 6543  df-fn 6544  df-f 6545
This theorem is referenced by:  fabex  7923  f1oabexg  7924  elghomlem1OLD  36742
  Copyright terms: Public domain W3C validator