| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabexg | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) |
| Ref | Expression |
|---|---|
| fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3468 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | fabexg.1 | . . 3 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | simprl 770 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑥:𝐴⟶𝐵 ∧ 𝜑)) → 𝑥:𝐴⟶𝐵) | |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 6 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 7 | 4, 5, 6 | fabexd 7913 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) |
| 8 | 3, 7 | eqeltrid 2832 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
| 9 | 1, 2, 8 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fabex 7916 mapex 7917 f1oabexgOLD 7919 elghomlem1OLD 37879 |
| Copyright terms: Public domain | W3C validator |