MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexg Structured version   Visualization version   GIF version

Theorem fabexg 7868
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3457 . 2 (𝐵𝐷𝐵 ∈ V)
3 fabexg.1 . . 3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 simprl 770 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑥:𝐴𝐵𝜑)) → 𝑥:𝐴𝐵)
5 simpl 482 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
6 simpr 484 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
74, 5, 6fabexd 7867 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ∈ V)
83, 7eqeltrid 2835 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
91, 2, 8syl2an 596 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fabex  7870  mapex  7871  f1oabexgOLD  7873  elghomlem1OLD  37924
  Copyright terms: Public domain W3C validator