MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem9 Structured version   Visualization version   GIF version

Theorem isf32lem9 10398
Description: Lemma for isfin3-2 10404. Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
isf32lem.g 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
Assertion
Ref Expression
isf32lem9 (𝜑𝐿:𝐺onto→ω)
Distinct variable groups:   𝑥,𝑤   𝑡,𝐺   𝑥,𝐿   𝑡,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝜑   𝑤,𝐹,𝑥,𝑦   𝑆,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦   𝐽,𝑠,𝑡,𝑤,𝑥,𝑦   𝐾,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑣,𝑢,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢,𝑠)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)   𝐿(𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem isf32lem9
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.g . . . 4 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
2 ssab2 4088 . . . . . . 7 {𝑠 ∣ (𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))} ⊆ ω
3 iotacl 6548 . . . . . . 7 (∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ {𝑠 ∣ (𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))})
42, 3sselid 3992 . . . . . 6 (∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
5 iotanul 6540 . . . . . . 7 (¬ ∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) = ∅)
6 peano1 7910 . . . . . . 7 ∅ ∈ ω
75, 6eqeltrdi 2846 . . . . . 6 (¬ ∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
84, 7pm2.61i 182 . . . . 5 (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω
98a1i 11 . . . 4 (𝑡𝐺 → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
101, 9fmpti 7131 . . 3 𝐿:𝐺⟶ω
1110a1i 11 . 2 (𝜑𝐿:𝐺⟶ω)
12 isf32lem.a . . . . . 6 (𝜑𝐹:ω⟶𝒫 𝐺)
13 isf32lem.b . . . . . 6 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
14 isf32lem.c . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
15 isf32lem.d . . . . . 6 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
16 isf32lem.e . . . . . 6 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
17 isf32lem.f . . . . . 6 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
1812, 13, 14, 15, 16, 17isf32lem6 10395 . . . . 5 ((𝜑𝑎 ∈ ω) → (𝐾𝑎) ≠ ∅)
19 n0 4358 . . . . 5 ((𝐾𝑎) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝐾𝑎))
2018, 19sylib 218 . . . 4 ((𝜑𝑎 ∈ ω) → ∃𝑏 𝑏 ∈ (𝐾𝑎))
2112, 13, 14, 15, 16, 17isf32lem8 10397 . . . . . . . . 9 ((𝜑𝑎 ∈ ω) → (𝐾𝑎) ⊆ 𝐺)
2221sselda 3994 . . . . . . . 8 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → 𝑏𝐺)
23 eleq1w 2821 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 ∈ (𝐾𝑠) ↔ 𝑏 ∈ (𝐾𝑠)))
2423anbi2d 630 . . . . . . . . . . . 12 (𝑡 = 𝑏 → ((𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) ↔ (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
2524iotabidv 6546 . . . . . . . . . . 11 (𝑡 = 𝑏 → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
26 iotaex 6535 . . . . . . . . . . 11 (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ V
2725, 1, 26fvmpt3i 7020 . . . . . . . . . 10 (𝑏𝐺 → (𝐿𝑏) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
2822, 27syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (𝐿𝑏) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
29 simp1r 1197 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → 𝑏 ∈ (𝐾𝑎))
30 simpl1 1190 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝜑)
31 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑠𝑎)
3231necomd 2993 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑎𝑠)
33 simpl2 1191 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑎 ∈ ω)
34 simpl3 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑠 ∈ ω)
3512, 13, 14, 15, 16, 17isf32lem7 10396 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎𝑠) ∧ (𝑎 ∈ ω ∧ 𝑠 ∈ ω)) → ((𝐾𝑎) ∩ (𝐾𝑠)) = ∅)
3630, 32, 33, 34, 35syl22anc 839 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → ((𝐾𝑎) ∩ (𝐾𝑠)) = ∅)
37 disj1 4457 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑎) ∩ (𝐾𝑠)) = ∅ ↔ ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
3836, 37sylib 218 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
3938ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠))))
40 sp 2180 . . . . . . . . . . . . . . . . . . 19 (∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)) → (𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
4139, 40syl6 35 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → (𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠))))
4241com23 86 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠))))
43423adant1r 1176 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠))))
4429, 43mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠)))
4544necon4ad 2956 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑠) → 𝑠 = 𝑎))
46453expia 1120 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (𝑠 ∈ ω → (𝑏 ∈ (𝐾𝑠) → 𝑠 = 𝑎)))
4746impd 410 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) → 𝑠 = 𝑎))
48 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → (𝑠 ∈ ω ↔ 𝑎 ∈ ω))
49 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑎 → (𝐾𝑠) = (𝐾𝑎))
5049eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → (𝑏 ∈ (𝐾𝑠) ↔ 𝑏 ∈ (𝐾𝑎)))
5148, 50anbi12d 632 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) ↔ (𝑎 ∈ ω ∧ 𝑏 ∈ (𝐾𝑎))))
5251biimprcd 250 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑏 ∈ (𝐾𝑎)) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5352ancoms 458 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝐾𝑎) ∧ 𝑎 ∈ ω) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5453adantll 714 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5547, 54impbid 212 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) ↔ 𝑠 = 𝑎))
5655iota5 6545 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))) = 𝑎)
5756an32s 652 . . . . . . . . 9 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))) = 𝑎)
5828, 57eqtr2d 2775 . . . . . . . 8 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → 𝑎 = (𝐿𝑏))
5922, 58jca 511 . . . . . . 7 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (𝑏𝐺𝑎 = (𝐿𝑏)))
6059ex 412 . . . . . 6 ((𝜑𝑎 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑏𝐺𝑎 = (𝐿𝑏))))
6160eximdv 1914 . . . . 5 ((𝜑𝑎 ∈ ω) → (∃𝑏 𝑏 ∈ (𝐾𝑎) → ∃𝑏(𝑏𝐺𝑎 = (𝐿𝑏))))
62 df-rex 3068 . . . . 5 (∃𝑏𝐺 𝑎 = (𝐿𝑏) ↔ ∃𝑏(𝑏𝐺𝑎 = (𝐿𝑏)))
6361, 62imbitrrdi 252 . . . 4 ((𝜑𝑎 ∈ ω) → (∃𝑏 𝑏 ∈ (𝐾𝑎) → ∃𝑏𝐺 𝑎 = (𝐿𝑏)))
6420, 63mpd 15 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏𝐺 𝑎 = (𝐿𝑏))
6564ralrimiva 3143 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏𝐺 𝑎 = (𝐿𝑏))
66 dffo3 7121 . 2 (𝐿:𝐺onto→ω ↔ (𝐿:𝐺⟶ω ∧ ∀𝑎 ∈ ω ∃𝑏𝐺 𝑎 = (𝐿𝑏)))
6711, 65, 66sylanbrc 583 1 (𝜑𝐿:𝐺onto→ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1534   = wceq 1536  wex 1775  wcel 2105  ∃!weu 2565  {cab 2711  wne 2937  wral 3058  wrex 3067  {crab 3432  cdif 3959  cin 3961  wss 3962  wpss 3963  c0 4338  𝒫 cpw 4604   cint 4950   class class class wbr 5147  cmpt 5230  ran crn 5689  ccom 5692  suc csuc 6387  cio 6513  wf 6558  ontowfo 6560  cfv 6562  crio 7386  ωcom 7886  cen 8980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976
This theorem is referenced by:  isf32lem10  10399
  Copyright terms: Public domain W3C validator