MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem9 Structured version   Visualization version   GIF version

Theorem isf32lem9 10252
Description: Lemma for isfin3-2 10258. Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
isf32lem.g 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
Assertion
Ref Expression
isf32lem9 (𝜑𝐿:𝐺onto→ω)
Distinct variable groups:   𝑥,𝑤   𝑡,𝐺   𝑥,𝐿   𝑡,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝜑   𝑤,𝐹,𝑥,𝑦   𝑆,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦   𝐽,𝑠,𝑡,𝑤,𝑥,𝑦   𝐾,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑣,𝑢,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢,𝑠)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)   𝐿(𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem isf32lem9
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.g . . . 4 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
2 ssab2 4026 . . . . . . 7 {𝑠 ∣ (𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))} ⊆ ω
3 iotacl 6467 . . . . . . 7 (∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ {𝑠 ∣ (𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))})
42, 3sselid 3927 . . . . . 6 (∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
5 iotanul 6461 . . . . . . 7 (¬ ∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) = ∅)
6 peano1 7819 . . . . . . 7 ∅ ∈ ω
75, 6eqeltrdi 2839 . . . . . 6 (¬ ∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
84, 7pm2.61i 182 . . . . 5 (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω
98a1i 11 . . . 4 (𝑡𝐺 → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
101, 9fmpti 7045 . . 3 𝐿:𝐺⟶ω
1110a1i 11 . 2 (𝜑𝐿:𝐺⟶ω)
12 isf32lem.a . . . . . 6 (𝜑𝐹:ω⟶𝒫 𝐺)
13 isf32lem.b . . . . . 6 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
14 isf32lem.c . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
15 isf32lem.d . . . . . 6 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
16 isf32lem.e . . . . . 6 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
17 isf32lem.f . . . . . 6 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
1812, 13, 14, 15, 16, 17isf32lem6 10249 . . . . 5 ((𝜑𝑎 ∈ ω) → (𝐾𝑎) ≠ ∅)
19 n0 4300 . . . . 5 ((𝐾𝑎) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝐾𝑎))
2018, 19sylib 218 . . . 4 ((𝜑𝑎 ∈ ω) → ∃𝑏 𝑏 ∈ (𝐾𝑎))
2112, 13, 14, 15, 16, 17isf32lem8 10251 . . . . . . . . 9 ((𝜑𝑎 ∈ ω) → (𝐾𝑎) ⊆ 𝐺)
2221sselda 3929 . . . . . . . 8 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → 𝑏𝐺)
23 eleq1w 2814 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 ∈ (𝐾𝑠) ↔ 𝑏 ∈ (𝐾𝑠)))
2423anbi2d 630 . . . . . . . . . . . 12 (𝑡 = 𝑏 → ((𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) ↔ (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
2524iotabidv 6465 . . . . . . . . . . 11 (𝑡 = 𝑏 → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
26 iotaex 6457 . . . . . . . . . . 11 (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ V
2725, 1, 26fvmpt3i 6934 . . . . . . . . . 10 (𝑏𝐺 → (𝐿𝑏) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
2822, 27syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (𝐿𝑏) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
29 simp1r 1199 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → 𝑏 ∈ (𝐾𝑎))
30 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝜑)
31 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑠𝑎)
3231necomd 2983 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑎𝑠)
33 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑎 ∈ ω)
34 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑠 ∈ ω)
3512, 13, 14, 15, 16, 17isf32lem7 10250 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎𝑠) ∧ (𝑎 ∈ ω ∧ 𝑠 ∈ ω)) → ((𝐾𝑎) ∩ (𝐾𝑠)) = ∅)
3630, 32, 33, 34, 35syl22anc 838 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → ((𝐾𝑎) ∩ (𝐾𝑠)) = ∅)
37 disj1 4399 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑎) ∩ (𝐾𝑠)) = ∅ ↔ ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
3836, 37sylib 218 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
3938ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠))))
40 sp 2186 . . . . . . . . . . . . . . . . . . 19 (∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)) → (𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
4139, 40syl6 35 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → (𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠))))
4241com23 86 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠))))
43423adant1r 1178 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠))))
4429, 43mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠)))
4544necon4ad 2947 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑠) → 𝑠 = 𝑎))
46453expia 1121 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (𝑠 ∈ ω → (𝑏 ∈ (𝐾𝑠) → 𝑠 = 𝑎)))
4746impd 410 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) → 𝑠 = 𝑎))
48 eleq1w 2814 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → (𝑠 ∈ ω ↔ 𝑎 ∈ ω))
49 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑎 → (𝐾𝑠) = (𝐾𝑎))
5049eleq2d 2817 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → (𝑏 ∈ (𝐾𝑠) ↔ 𝑏 ∈ (𝐾𝑎)))
5148, 50anbi12d 632 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) ↔ (𝑎 ∈ ω ∧ 𝑏 ∈ (𝐾𝑎))))
5251biimprcd 250 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑏 ∈ (𝐾𝑎)) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5352ancoms 458 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝐾𝑎) ∧ 𝑎 ∈ ω) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5453adantll 714 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5547, 54impbid 212 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) ↔ 𝑠 = 𝑎))
5655iota5 6464 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))) = 𝑎)
5756an32s 652 . . . . . . . . 9 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))) = 𝑎)
5828, 57eqtr2d 2767 . . . . . . . 8 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → 𝑎 = (𝐿𝑏))
5922, 58jca 511 . . . . . . 7 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (𝑏𝐺𝑎 = (𝐿𝑏)))
6059ex 412 . . . . . 6 ((𝜑𝑎 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑏𝐺𝑎 = (𝐿𝑏))))
6160eximdv 1918 . . . . 5 ((𝜑𝑎 ∈ ω) → (∃𝑏 𝑏 ∈ (𝐾𝑎) → ∃𝑏(𝑏𝐺𝑎 = (𝐿𝑏))))
62 df-rex 3057 . . . . 5 (∃𝑏𝐺 𝑎 = (𝐿𝑏) ↔ ∃𝑏(𝑏𝐺𝑎 = (𝐿𝑏)))
6361, 62imbitrrdi 252 . . . 4 ((𝜑𝑎 ∈ ω) → (∃𝑏 𝑏 ∈ (𝐾𝑎) → ∃𝑏𝐺 𝑎 = (𝐿𝑏)))
6420, 63mpd 15 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏𝐺 𝑎 = (𝐿𝑏))
6564ralrimiva 3124 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏𝐺 𝑎 = (𝐿𝑏))
66 dffo3 7035 . 2 (𝐿:𝐺onto→ω ↔ (𝐿:𝐺⟶ω ∧ ∀𝑎 ∈ ω ∃𝑏𝐺 𝑎 = (𝐿𝑏)))
6711, 65, 66sylanbrc 583 1 (𝜑𝐿:𝐺onto→ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  {cab 2709  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3894  cin 3896  wss 3897  wpss 3898  c0 4280  𝒫 cpw 4547   cint 4895   class class class wbr 5089  cmpt 5170  ran crn 5615  ccom 5618  suc csuc 6308  cio 6435  wf 6477  ontowfo 6479  cfv 6481  crio 7302  ωcom 7796  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832
This theorem is referenced by:  isf32lem10  10253
  Copyright terms: Public domain W3C validator